Advertisement

Journal of Statistical Physics

, Volume 124, Issue 2–4, pp 275–300 | Cite as

Half-Space Problems for the Boltzmann Equation: A Survey

  • Claude BardosEmail author
  • François Golse
  • Yoshio Sone
Article

Abstract

This paper reviews recent mathematical results on the half-space problem for the Boltzmann equation. The case of a phase transition is discussed in detail.

KEY WORDS:

Boltzmann equation Boundary layers Half-space problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Aoki, K. Nishino, Y. Sone and H. Sugimoto, Numerical analysis of steady flows of a gas condensing on or evaporating from its plane condensed phase on the basis of kinetic theory: Effect of gas motion along the condensed phase. Phys. Fluids, A 3:2260–2275 (1991).zbMATHCrossRefADSGoogle Scholar
  2. 2.
    K. Aoki, Y. Sone and T. Yamada, Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory. Phys. Fluids A 2:1867–1878 (1990).zbMATHCrossRefADSGoogle Scholar
  3. 3.
    M. D. Arthur and C. Cercignani, Nonexistence of a steady rarefied supersonic flow in a half-space. Z. Angew. Math. Phys. 31:634–645 (1980).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Revista Mat. Iberoamericana To appear.Google Scholar
  5. 5.
    C. Bardos, R. Caflisch and B. Nicolaenko, The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas. Commun. Pure Appl. Math. 39:323–352 (1986).zbMATHMathSciNetGoogle Scholar
  6. 6.
    P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94:511–525 (1954).Google Scholar
  7. 7.
    A. V. Bobylev, R. Grzhibovskis and A. Heinz, Entropy inequalities for evaporation/condensation problem in rarefied gas. J. Stat. Phys. 102:1156–1176 (2001).Google Scholar
  8. 8.
    R. E. Caflisch and B. Nicolaenko, Shock profiles solutions of the Boltzmann equation. Commun. Math. Phys. 86:161–194 (1982).zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    C. Cercignani, Analytic solution of the temperature jump problem for the BGK model. Transport Theor. Statist. Phys. 6:29–56 (1977).zbMATHMathSciNetGoogle Scholar
  10. 10.
    C. Cercignani, Half-space problems in the kinetic theory of gases, in: Trends in applications of pure mathematics to mechanics (Bad Honnef, 1985), pp. 35–50, Lecture Notes in Phys., 249, (Springer, Berlin 1986).Google Scholar
  11. 11.
    C. Cercignani, R. Illner, M. Pulvirenti and M. Shinbrot, On nonlinear stationary half-space problems in discrete kinetic theory. J. Statist. Phys. 52:885–896 (1988).zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    F. Coron, F. Golse and C. Sulem, A classification of well-posed kinetic layer problems. Commun. Pure Appl. Math. 41:409–435 (1988).zbMATHMathSciNetGoogle Scholar
  13. 13.
    R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, (Wiley-Interscience, New York, 1948).zbMATHGoogle Scholar
  14. 14.
    J.-S. Darrozes and J.-P. Guiraud, Généralisation formelle du théorème H en présence de parois. Applications. C. R. Acad. Sci. Paris Sér. A 262:1368–1371 (1969).Google Scholar
  15. 15.
    F. Golse, Analysis of the boundary layer equation in the kinetic theory of gases, preprint.Google Scholar
  16. 16.
    F. Golse and F. Poupaud, Stationary solution of the linearized Boltzmann equation in a half-space. Math. Methods Appl. Sci. 11:483–502 (1989).zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Grad, Singular and nonuniform limits of solutions of the Boltzmann equation. in: R. Bellman, G. Birkhoff and I. Abu-Shumays (eds.), Transport theory (American Mathematical Society, Providence, 1969), pp. 269–308.Google Scholar
  18. 18.
    D. Hilbert, Begründung der kinetischen Gastheorie. Math. Ann. 72:562–577 (1912).zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    T.-P. Liu and S.-H. Yu, Boltzmann equation: Micro-macro decomposition and positivity of the shock profile. Commun. Math. Phys. 246:133–179 (2004).zbMATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Y. Sone, Kinetic theory of evaporation and condensation—Linear and nonlinear problems. J. Phys. Soc. Jpn 45:315–320 (1978).CrossRefGoogle Scholar
  21. 21.
    Y. Sone, Kinetic theoretical studies of the half-space problem of evaporation and condensation. Transp. Theory Stat. Phys. 29:227–260 (2000).zbMATHGoogle Scholar
  22. 22.
    Y. Sone, Kinetic Theory and Fluid Dynamics (Birkhäuser, Boston, 2002).zbMATHGoogle Scholar
  23. 23.
    Y. Sone, Molecular Gas Dynamics (Birkhäuser, Boston, 2006). (to be published).Google Scholar
  24. 24.
    Y. Sone, K. Aoki and T. Doi, Kinetic theory analysis of gas flows condensing on a plane condensed phase: Case of a mixture of a vapor and a noncondensable gas. Transp. Theory Stat. Phys 21:297–328 (1992).zbMATHGoogle Scholar
  25. 25.
    Y. Sone, K. Aoki and I. Yamashita, A study of unsteady strong condensation on a plane condensed phase with special interest in formation of steady profile. in: V. Boffi and C. Cercignani (eds.), Rarefied gas dynamics (Teubner, Stuttgart, 1986), Vol. II, 323–333.Google Scholar
  26. 26.
    Y. Sone, F. Golse, T. Ohwada and T. Doi, Analytical study of transonic flows of a gas condensing onto its plane condensed phase on the basis of kinetic theory. Eur. J. Mech. B/Fluids 17:277–306 (1998).zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Y. Sone, T. Ohwada and K. Aoki, Evaporation and condensation on a plane condensed phase: Numerical analysis of the linearized Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1:1398–1405 (1989).zbMATHCrossRefADSGoogle Scholar
  28. 28.
    Y. Sone and Y. Onishi, Kinetic theory of evaporation and condensation. J. Phys. Soc. Jpn 35:1773–1776 (1973).CrossRefGoogle Scholar
  29. 29.
    Y. Sone and H. Sugimoto, Strong evaporation from a plane condensed phase. in: G. E. A. Meier and P. A. Thompson (eds.), Adiabatic Waves in Liquid-Vapor Systems, (Springer, Berlin, 1990), pp. 293–304.Google Scholar
  30. 30.
    Y. Sone, S. Takata and F. Golse, Notes on the boundary conditions for fluid-dynamic equations on the interface of a gas and its condensed phase. Phys. Fluids 13:324–334 (2001).Google Scholar
  31. 31.
    Y. Sone, S. Takata and H. Sugimoto, The behavior of a gas in the continuum limit in the light of kinetic theory: The case of cylindrical Couette flows with evaporation and condensation. Phys. Fluids 8:3403–3413 (1996); Erratum, ibid. 9:1239 (1998).Google Scholar
  32. 32.
    S. Ukai, T. Yang and S.-H. Yu, Nonlinear boundary layers of the Boltzmann equation I. Existence. Commun. Math. Phys. 236:373–393 (2003).zbMATHMathSciNetCrossRefADSGoogle Scholar
  33. 33.
    S. Ukai, T. Yang and S.-H. Yu, Nonlinear stability of boundary layers of the Boltzmann equation I. The case \(\mathcal{M}_{\infty}<-1\). Commun. Math. Phys. 244:99–109 (2003).MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    P. Welander, On the temperature jump in a rarefied gas. Ark. Fys. 7:507–553 (1954).zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Université Paris 7 & Laboratoire J.-L. LionsParis Cedex 05France
  2. 2.KyotoJapan

Personalised recommendations