Journal of Statistical Physics

, Volume 123, Issue 3, pp 547–569 | Cite as

Linear Response Theory for Thermally Driven Quantum Open Systems

Article

Abstract

This note is a continuation of our recent paper [V. Jakšić Y. Ogata, and C.-A. Pillet, The Green-Kubo formula and Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. in press.] where we have proven the Green-Kubo formula and the Onsager reciprocity relations for heat fluxes in thermally driven quantum open systems. In this note we extend the derivation of the Green-Kubo formula to heat and charge fluxes and discuss some other generalizations of the model and results of [V. Jakšić Y. Ogata and C.-A. Pillet, The Green-Kubo formula and Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. in press.].

Keywords

nonequilibrium statistical mechanics steady states linear rsponse kubo formula fluctuation-dissipation onsager reciprocity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Araki, Relative entropy of states of von Neumann algebras, Publ. Res. Inst. Math. Sci. Kyoto Univ. 11:809 (1975/76).MathSciNetGoogle Scholar
  2. 2.
    H. Araki, Relative entropy of states of von Neumann algebras II, Publ. Res. Inst. Math. Sci. Kyoto Univ. 13:173 (1977/78).MathSciNetGoogle Scholar
  3. 3.
    W. K. Abou-Salem, and J. Fröhlich, Adiabatic Theorems and Reversible Isothermal Processes, Lett. Math. Phys., (in press).Google Scholar
  4. 4.
    H. Araki, T. G. Ho, Asymptotic time evolution of a partitioned infinite two-sided isotropic XY-chain, Tr. Mat. Inst. Steklova, 228 Probl. Sovrem. Mat. Fiz., 203, (2000); translation in Proc. Steklov Inst. Math. 228, 191, (2000).Google Scholar
  5. 5.
    W. Aschbacher, and C.-A. Pillet, Non-equilibrium steady states of the XY chain J. Stat. Phys. 12:1153 (2003).Google Scholar
  6. 6.
    W. Aschbacher, V. Jakšić, Y. Pautrat, and C.-A. Pillet, Topics in non-equilibrium quantum statistical mechanics. In Open Quantum Systems III. S. Attal, A. Joye, C.-A. Pillet editors. Lecture Notes in Mathematics 1882 (Springer, New York 2006).Google Scholar
  7. 7.
    W. Aschbacher, V. Jakšić, and Y. Pautrat, C.-A., Pillet, Transport properties of Ideal Fermi Gases (in preparation).Google Scholar
  8. 8.
    V. V. Aizenstadt, and V. A. Malyshev, Spin interaction with an Ideal fermi Gas. J. Stat. Phys. 48:51 (1987).MathSciNetCrossRefGoogle Scholar
  9. 9.
    D. D. Botvich, and V. A. Malyshev, Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi Gas, Commun. Math. Phys. 61:209 (1978).CrossRefADSGoogle Scholar
  10. 10.
    O. Bratteli, and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1 (Springer-Verlag, Berlin, 1987).Google Scholar
  11. 11.
    O. Bratteli, and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2nd edn (Springer-Verlag, Berlin, 1996).Google Scholar
  12. 12.
    E. B. Davies, Markovian master equations. Commun. Math. Phys. 39:91 (1974).Google Scholar
  13. 13.
    S. R. De Groot, and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1969).Google Scholar
  14. 14.
    J. Dereziński, and V. Jakšić, C.-A. Pillet, Perturbation theory of W^∗-dynamics, KMS-states and Liouvillean Rev. Math. Phys. 15:447 (2003).Google Scholar
  15. 15.
    M. J. Donald, Relative Hamiltonians which are not bounded from above, J. Func. Anal. 91:143 (1990).MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    D. J. Evans, and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990).Google Scholar
  17. 17.
    J. Fröhlich, M. Merkli, and D. Ueltschi, Dissipative transport: thermal contacts and tunneling junctions, Ann. Henri Poincaré 4:897 (2004).Google Scholar
  18. 18.
    V. Jakšić, Y. Ogata, and C.-A. Pillet, The Green-Kubo formula and Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys, (in press).Google Scholar
  19. 19.
    V. Jakšić, Y. Ogata, and C.-A. Pillet, The Green-Kubo formula for locally interacting fermionic systems, in preparation.Google Scholar
  20. 20.
    V. Jakšić, Y. Ogata, and C.-A. Pillet, In preparation.Google Scholar
  21. 21.
    V. Jakšić, Y. Ogata, and Y. Pautrat, C.-A. Pillet, In preparation.Google Scholar
  22. 22.
    V. Jakšić, and C.-A. Pillet, On entropy production in quantum statistical mechanics, Commun Math. Phys. 217:285 (2001).CrossRefADSGoogle Scholar
  23. 23.
    V. Jakšić, and C.-A. Pillet, Non-equilibrium steady states for finite quantum systems coupled to thermal reservoirs, Commun. Math. Phys. 226:131 (2002).Google Scholar
  24. 24.
    V. Jakšić, and C.-A. Pillet, Mathematical theory of non-equilibrium quantum statistical mechanics, J. Stat. Phys. 108:787 (2002).CrossRefGoogle Scholar
  25. 25.
    V. Jakšić, and C.-A. Pillet, A note on the entropy production formula, Contemp. Math. 327:175 (2003).Google Scholar
  26. 26.
    R. Kubo, M. Toda, and N. Hashitsune, Statistical Physics 2nd edition (Springer-Verlag, Berlin, 1991).Google Scholar
  27. 27.
    J. Lebowitz, and H. Spohn, Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs, Adv. Chem. Phys. 39:109 (1978).Google Scholar
  28. 28.
    L. Rey-Bellet, Open Classical Systems. In Open Quantum Systems II. S. Attal, A. Joye, C.-A. Pillet editors. Lecture Notes in Mathematics 1881: (Springer, New York, 2006).Google Scholar
  29. 29.
    D. Ruelle, Natural nonequilibrium states in quantum statistical mechanics, J. Stat. Phys. 98:57 (2000).MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    D. Ruelle, Entropy production in quantum spin systems, Commun. Math. Phys. 224:3 (2001).MATHMathSciNetCrossRefADSGoogle Scholar
  31. 31.
    D. Ruelle, Topics in quantum statistical mechanics and operator algebras. Preprint, mp-arc 01-257 (2001).Google Scholar
  32. 32.
    D. Ruelle, Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics, J. Stat. Phys. 95:393 (1999).MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada
  2. 2.CPT-CNRS UMR 6207Université du SudLa Garde CedexFrance
  3. 3.Department of Mathematical SciencesUniversity of TokyoTokyoJapan

Personalised recommendations