Journal of Statistical Physics

, Volume 123, Issue 1, pp 89–110

On Using Random Walks to Solve the Space-Fractional Advection-Dispersion Equations

  • Zhang Yong
  • David A. Benson
  • Mark M. Meerschaert
  • Hans-Peter Scheffler
Article

Abstract

The solution of space-fractional advection-dispersion equations (fADE) by random walks depends on the analogy between the fADE and the forward equation for the associated Markov process. The forward equation, which provides a Lagrangian description of particles moving under specific Markov processes, is derived here by the adjoint method. The fADE, however, provides an Eulerian description of solute fluxes. There are two forms of the fADE, based on fractional-flux (FF-ADE) and fractional divergence (FD-ADE). The FF-ADE is derived by taking the integer-order mass conservation of non-local diffusive flux, while the FD-ADE is derived by taking the fractional-order mass conservation of local diffusive flux. The analogy between the fADE and the forward equation depends on which form of the fADE is used and on the spatial variability of the dispersion coefficient D in the fADE. If D does not vary in space, then the fADEs can be solved by tracking particles following a Markov process with a simple drift and an α-stable Lévy noise with index α that corresponds to the fractional order of the fADE. If D varies smoothly in space and the solute concentration at the upstream boundary remains zero, the FD-ADE can be solved by simulating a Markov process with a simple drift, an α-stable Lévy noise and an additional term with the dispersion gradient and an additional Lévy noise of order α−1. However, a non-Markov process might be needed to solve the FF-ADE with a space-dependent D, except for specific D such as a linear function of space.

Key words

Random walk forward equation fractional advection-dispersion equation adjoint method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Baeumer and M. M. Meerschaert, Frac. Calc. Appl. Anal 4:481 (2001).MATHMathSciNetGoogle Scholar
  2. 2.
    D. A. Benson, Ph.D. dissertation, University of Nevada at Reno, 1998 (unpublished).Google Scholar
  3. 3.
    D. A. Benson, R. Schumer, M. M. Meerschaert, and S. W. Wheatcraft, Transp. Por. Media 42:211 (2001).CrossRefMathSciNetGoogle Scholar
  4. 4.
    D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, Water Resour. Res. 36(6):1403 (2000).CrossRefADSGoogle Scholar
  5. 5.
    A. V. Chechkin, R. Gorenflo and I. M. Sokolov, J. Phys. A 38:L679 (2005).MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    A. V. Chechkin, V. Y. Gonchar, J. Klafter, R. Metzler, and L. V. Tanatarov, J. Sta. Phys. 115:1505 (2004).CrossRefGoogle Scholar
  7. 7.
    S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, p. 380, John Wiley & Sons, New York, 1986.MATHGoogle Scholar
  8. 8.
    W. Feller, An introduction to Probability Theory and Its Applications, second edition, John Wiley & Sons, New York, 1971.MATHGoogle Scholar
  9. 9.
    R. Gorenflo and F. Mainardi, J. Anal. Appl. 18(2):231 (1999).MATHMathSciNetGoogle Scholar
  10. 10.
    R. Gorenflo, A. Vivoli, and F. Mainardi, Nonlinear Dynamics 38:101 (2004).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Nonlinear Dynamics 29:129 (2002).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    R. Gorenflo, G. D. Fabritiis, and F. Mainardi, Phys. A 269:79 (2004).Google Scholar
  13. 13.
    A. E. Hassan and M. M. Mohamed, J. Hyd. 275:242 (2002).CrossRefADSGoogle Scholar
  14. 14.
    A. Janicki and A. Weron, Simulation and Chaotic Behavior of a-stable Stochastic Processes, p. 355, Marcel Dekker, Inc., New York, 1994.Google Scholar
  15. 15.
    W. Kinzelbach, In: E. Custodio (Ed.), Groundwater Flow and Quality Modeling, pp. 227–245, Reidel Publishing Company, 1988.Google Scholar
  16. 16.
    K. A. Klise, V. C. Tidwell, S. A. McKenna, and M. D. Chapin, Geol. Soc. Am. Abstr. Programs 36(5):573 (2004).Google Scholar
  17. 17.
    E. M. LaBolle, G. E. Fogg, and A. F. B. Tompson, Water Resour. Res. 32:583 (1996).CrossRefADSGoogle Scholar
  18. 18.
    E. M. LaBolle, J. Quastel, G. E. Fogg, and J. Gravner, Water Resour. Res. 36(3):651 (2000).CrossRefADSGoogle Scholar
  19. 19.
    F. Liu, V. Anh, and I. Turner, J. Comput. Appl. Math. 166:209 (2004).MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    M. M. Meerschaert and C. Tadjeran, Appl. Nume. Math. 56:80 (2006).MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    M. M. Meerschaert and C. Tadjeran, J. of Comp. and Appl. Math. 172:65 (2004).MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    M. M. Meerschaert and H. P. Scheffler, Frac. Cal. Appl. Analy. 5(1):27 (2002).Google Scholar
  23. 23.
    M. M. Meerschaert and H. P. Scheffler, Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice, pp. 45–46, John Wiley & Sons, New York, 2001.MATHGoogle Scholar
  24. 24.
    M. M. Meerschaert, D. A. Benson, and B. Baeumer, Phys. Rev. E 59(5):5026 (1999).CrossRefADSGoogle Scholar
  25. 25.
    M. M. Meerschaert, D. A. Benson, and B. Baeumer, Phys. Rev. E 63(2):12 (2001).CrossRefGoogle Scholar
  26. 26.
    M. M. Meerschaert, J. Mortensen, and S. W. Wheatcraft, Phys. A., to appear (2006).Google Scholar
  27. 27.
    R. Metzler and J. Klafter, J. Phys. A. 161:16 (2004).MathSciNetGoogle Scholar
  28. 28.
    R. Metzler, E. Barkai, and J. Klafter, Europhys. Lett. 46(4):431 (1999).CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, John Wiley, New York, 1993.MATHGoogle Scholar
  30. 30.
    T. J. Osler, The Americ. Math. Mon. 78(6):645 (1971).MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    H. Risken, The Fokker-Planck Equation, p. 454, Springer & Verlag, New York, 1984.MATHGoogle Scholar
  32. 32.
    J. P. Roop, Ph.D. dissertation, Clemson University, 2004 (unpublished).Google Scholar
  33. 33.
    G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, New York, 1994.MATHGoogle Scholar
  34. 34.
    H. Scher and M. Lax, Phys. Rev. B 7(10):4491 (1973).CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    R. Schumer, D. A. Benson, M. M. Meerschaert, and S. W. Wheatcraft, J. Contam. Hyd. 48:69 (2001).CrossRefGoogle Scholar
  36. 36.
    I. M. Sokolov and R. Metzler, J. Phys. A 37: L609 (2004).MATHCrossRefADSMathSciNetGoogle Scholar
  37. 37.
    D. Stroock, Wahrscheinlichkeitstheorie verw. Gebiete 32:209 (1975).MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    G. J. M. Uffink, In: H. E. Kobus and W. Kinzelbach (Eds.), Contaminant Transport in Groundwater, p. 283, Brookfield: A.A. Balkema, Vt., 1989.Google Scholar
  39. 39.
    G. S. Weissmann, Y. Zhang, E. M. LaBolle, and G. E. Fogg, Water Resour. Res. 38(10), doi: 10.1029/2001WR000907.Google Scholar
  40. 40.
    V. V. Yanovsky, A. V. Chechkin, D. Schertzer, and A. V. Tur, Phys. A 282:13 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Zhang Yong
    • 1
    • 2
  • David A. Benson
    • 2
  • Mark M. Meerschaert
    • 3
  • Hans-Peter Scheffler
    • 4
  1. 1.Division of Hydrologic SciencesDesert Research InstituteRenoUSA
  2. 2.Department of Geology and Geological EngineeringColorado School of MinesGoldenUSA
  3. 3.Department of Mathematics and StatisticsUniversity of OtagoDunedinNew Zealand
  4. 4.Department of MathematicsUniversity of NevadaRenoUSA

Personalised recommendations