Journal of Statistical Physics

, Volume 124, Issue 2–4, pp 781–822 | Cite as

Mathematics of Granular Materials

Article

Abstract

This is a short and somewhat informal review on the most mathematical parts of the kinetic theory of granular media, intended for physicists and for mathematicians outside the field.

Keywords

granular materials Boltzmann equation inelastic collisions homogeneous cooling states 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg, Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152(4):327–355 (2000).MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Baldassari, U. Marini Bettolo Marconi, and A. Puglisi, Influence of correlations on the velocity statistics of scalar granular gases. Europhys. Lett. 58(1): 14–20 (2002).CrossRefADSGoogle Scholar
  3. 3.
    A. Barrat, E. Trizac, and M. Ernst, Granular gases: Dynamics and collective effects. To appear in Journal of Physics C: Condensed Matter. 17: S2429–S2437 (2005).Google Scholar
  4. 4.
    E. Ben-Naïm and P. Krapivsky, Multiscaling in inelastic collisions. Phys. Rev. E 61:R5–R8 (2000).Google Scholar
  5. 5.
    E. Ben-Naïm and P. Krapivsky, The inelastic Maxwell model. In Granular Gas Dynamics, T. Poeschel and N. Brilliantov, Eds., vol. 624 of Lect. Notes Phys. Springer-Verlag, Berlin, 2003. cond-mat/0301238.Google Scholar
  6. 6.
    D. Benedetto, E. Caglioti, J. A. Carrillo, and M. Pulvirenti, A non-Maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys. 91(5–6):979–990 (1998).MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    D. Benedetto, E. Caglioti, and M. Pulvirenti, A kinetic equation for granular media. RAIRO Model. Math. Anal. Numér. 31(5):615–641 (1997). Erratum in M2AN Math. Model. Numer. Anal. 33(2):439–441 (1999).Google Scholar
  8. 8.
    D. Benedetto and M. Pulvirenti, On the one-dimensional Boltzmann equation for granular flows. M2AN Math. Model. Numer. Anal. 35(5):899–905 (2001).MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Bisi, J. Carrillo, and G. Toscani, Contractive metrics for a Boltzmann equation for granular gases: Diffusive equilibria. J. Statist. Phys. 118:301–331 (2005).MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Bisi, G. Spiga, and G. Toscani, Grad's equations and hydrodynamics for weakly inelastic granular flows. Phys. Fluids 16(12):4235–4247 (2004).MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    C. Bizon, M. Shattuck, J. Swift, and H. Swinney, Transport coefficients for granular media from molecular dynamics simulations. Phys. Rev. E 60:4340–4351 (1999).CrossRefADSGoogle Scholar
  12. 12.
    A. V. Bobylev, J. A. Carrillo, and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Statist. Phys. 98(3–4):743–773 (2000). Erratum in: J. Statist. Phys. 103(5–6):1137–1138 (2001).Google Scholar
  13. 13.
    A. V. Bobylev and C. Cercignani, Moment equations for a granular material in a thermal bath. J. Statist. Phys. 106(3–4):547–567 (2002).MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. V. Bobylev and C. Cercignani, Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Statist. Phys. 110(1–2):333–375 (2003).MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    A. V. Bobylev, C. Cercignani, and G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Statist. Phys. 111(1–2):403–417 (2003).MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. V. Bobylev and I. M. Gamba, Boltzmann equations for mixtures of Maxwell gases: exact solutions and power like tails. J. Statist. Phys. this issue.Google Scholar
  17. 17.
    A. V. Bobylev, I. M. Gamba, and V. A. Panferov, Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions. J. Statist. Phys. 116(5–6):1651–1682 (2004).MathSciNetCrossRefGoogle Scholar
  18. 18.
    N. Brilliantov and T. Pöschel, Kinetic theory of granular gases. Oxford Graduate Texts. Oxford University Press, 2004.Google Scholar
  19. 19.
    E. Caglioti and C. Villani, Homogeneous cooling states are not always good approximations to granular flows. Arch. Ration. Mech. Anal. 163(4):329–343 (2002).MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations. In Handbook of mathematical fluid dynamics. Vol. III. North-Holland, Amsterdam, 2004, pp. 161–244.Google Scholar
  21. 21.
    E. A. Carlen and W. Gangbo, Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric. Arch. Ration. Mech. Anal. 172(1):21–64 (2004).MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    J. A. Carrillo, C. Cercignani, and I. M. Gamba, Steady states of a Boltzmann equation for driven granular media. Phys. Rev. E (3) 62 6(part A):7700–7707 (2000).MathSciNetGoogle Scholar
  23. 23.
    J. A. Carrillo, R. J. Mccann, and C. Villani, Contraction in the 2-Wasserstein length space and thermalization of granular media. Arch. Rational Mech. Anal. 179:217–263 (2006).Google Scholar
  24. 24.
    J. A. Carrillo, R. J. Mccann, and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana 19(3):971–1018 (2003).MATHMathSciNetGoogle Scholar
  25. 25.
    C. Cercignani, Recent developments in the mechanics of granular materials. In Fisica matematica e ingeneria delle strutture : rapporti e compatibilità, G. Ferrarese, Ed. Pitagora, Ed. Bologna, 1995, pp. 119–132.Google Scholar
  26. 26.
    C. Cercignani, Shear flow of a granular material. J. Statist. Phys. 102(5–6):1407–1415 (2001).MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Ernst and R. Brito, Anomalous velocity distributions in inelastic Maxwell gases. cond-mat/0310406.Google Scholar
  28. 28.
    M. Ernst and R. Brito, Asymptotic solutions of the nonlinear Boltzmann equation for dissipative systems. In Granular Gas Dynamics, T. Poeschel and N. Brilliantov, Eds., vol. 624 of Lect. Notes Phys. Springer-Verlag, Berlin, 2003. cond-mat/0304608.Google Scholar
  29. 29.
    M. H. Ernst, and R. Brito, Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails. J. Statist. Phys. 109(3–4):407–432 (2002). Special issue dedicated to J. Robert Dorfman on the occasion of his sixty-fifth birthday.Google Scholar
  30. 30.
    M. J. Esteban and B. Perthame, On the modified Enskog equation for elastic and inelastic collisions. Models with spin. Ann. Inst. H. Poincaré Anal. Non Linéaire 8(3–4):289–308 (1991).MATHMathSciNetGoogle Scholar
  31. 31.
    I. M. Gamba, V. Panferov, and C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation. Preprint.Google Scholar
  32. 32.
    I. M. Gamba, V. Panferov, and C. Villani, On the Boltzmann equation for diffusively excited granular media. Comm. Math. Phys. 246(3):503–541 (2004).MATHMathSciNetCrossRefADSGoogle Scholar
  33. 33.
    P. Haff, Grain flow as a fluid-mechanical phenomenon. J. Fluid. Mech. 134:401–430 (1983).MATHCrossRefADSGoogle Scholar
  34. 34.
    J. T. Jenkins and M. W. Richman, Grad's 13-moment system for a dense gas of inelastic spheres. Arch. Rational Mech. Anal. 87(4):355–377 (1985).MATHMathSciNetCrossRefADSGoogle Scholar
  35. 35.
    P. Krapivsky and E. Ben-Naim, Nontrivial velocity distributions in inelastic gases. J. Phys. A: Math. Gen. 35:L147–L152 (2002).MATHMathSciNetCrossRefADSGoogle Scholar
  36. 36.
    Y. Le Jan and A. S. Sznitman, Stochastic cascades and 3-dimensional Navier-Stokes equations. Probab. Theory Related Fields 109(3):343–366 (1997).MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    H. Li and G. Toscani, Long-time asymptotics of kinetic models of granular flows. Arch. Ration. Mech. Anal. 172(3):407–428 (2004).MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    B. Lods and G. Toscani, The dissipative linear Boltzmann equation for hard spheres. J. Statist. Phys. 117(3–4):635–664 (2004).MathSciNetCrossRefGoogle Scholar
  39. 39.
    S. Mischler and C. Mouhot, Cooling process for inelastic Boltzmann equations for hard spheres, Part I: The Cauchy problem. J. Statist. Phys. this issue.Google Scholar
  40. 40.
    S. Mischler, C. Mouhot, and M. Rodriguez Ricard, Cooling process for inelasic Boltzmann equations for hard spheres, Part II: Self-similar solutions and tail behavior. J. Statist. Phys., this issue.Google Scholar
  41. 41.
    C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Ration. Mech. Anal. 173(2):169–212 (2004).MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    G. Spiga and G. Toscani, The dissipative linear Boltzmann equation. Appl. Math. Lett. 17(3)(2004), 295–301.MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    G. Toscani, Kinetic and hydrodynamic models of nearly elastic granular flows. Monatsh. Math. 142(1–2):179–192 (2004).MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    C. Villani, A review of mathematical topics in collisional kinetic theory. In Handbook of mathematical fluid dynamics, Vol. I. North-Holland, Amsterdam, 2002, pp. 71–305.Google Scholar
  45. 45.
    C. Villani, Topics in optimal transportation, vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003.Google Scholar
  46. 46.
    D. Williams and F. Mackintosh, Driven granular media in one dimension: Correlations and equation of state. Phys. Rev. E 54:R9–R12 (1996).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.UMPALyon Cedex 07France

Personalised recommendations