Skip to main content
Log in

On Hardness and Electronegativity Equalization in Chemical Reactivity Theory

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Chemical Reactivity Theory (CRT) contains reactivity indices defined as first and second derivatives of ground-state properties with respect to electron number such as the electronegativity and the hardness. This necessitates use of the Perdew, Parr, Levy, and Balduz (PPLB) version of noninteger density-functional theory (NIDFT) to provide a basis for CRT in DFT. However, the PPLB NIDFT yields ground-state properties which are piecewise linear continuous functions of number, yielding vanishing hardness and staircase electronegativities which do not admit electronegativity equalization. To overcome these difficulties, in the present paper we modify the relationship between CRT and DFT, basing the former on our previously formulated “atoms” in “molecules” theory (AIMT) but retaining the PPLB NIDFT. We recapture electronegativity equalization through the agency of a uniquely defined reactivity potential. We demonstrate that a positive definite hardness matrix can be defined which controls the minimum cost to the AIMT energy functional of internal fluctuations of the electron numbers of the parts of a system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AIMT:

“Atoms” in “Molecules” theory

CP:

Car-Parinello(28)

CRT:

Chemical-reactivity theory

DF:

Density functional

DFT:

Density-functional theory

EDF:

Ensemble density functional

EDFT:

Ensemble density-functional theory

EEP:

Electronegativity equalization principle

EVR:

Ensemble v-representable

HK:

Hohenberg-Kohn(1)

HOMO:

Highest occupied molecular orbital

KS:

Kohn-Sham(2)

LL:

Levy-Lieb constrained search algorithm(11–13)

LUMO:

Lowest unoccupied molecular orbital

NIDF:

Non-integer density functional

NIDFT:

Non-integer density-functional theory

PPLB:

Perdew Parr Levy and Balduz(9)

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136B:864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  2. W. Kohn and L. J. Sham, Phys. Rev. 140:A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).

    Google Scholar 

  4. R. F. Nalewajski, J. Korchowiec, and A. Michalak, Topics Curr. Chem. 183:25 (1996).

    Article  Google Scholar 

  5. P. Geerlings, F. De Proft, and W. Langenaeker, Chem. Rev. 103:1793 (2003).

    PubMed  Google Scholar 

  6. R. T. Sanderson, Science 114:670 (1951).

    Article  ADS  Google Scholar 

  7. J. F. Janak, Phys. Rev. B 18:7165 (1978).

    Article  ADS  Google Scholar 

  8. N. D. Mermin, Phys. Rev. 137:A1441 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  9. J. P. Perdew, R. G. Parr, M. Levy, and J. R. Balduz, Jr., Phys. Rev. Lett. 49:1691 (1982).

    Article  ADS  Google Scholar 

  10. J. P. Perdew, in Density Functional Methods in Physics, ed. R. M. Dreizler and J. da Providencia (Plenum, New York, 1985) p. 265.

  11. M. Levy, Proc. Nat. Acad. Sci. USA 76:6062 (1979).

    Article  PubMed  ADS  Google Scholar 

  12. E. H. Lieb, in Physics as Natural Philosophy, eds. A. Shimony and H. Feshbach (MIT Press, Cambridge, 1982) p. 111.

  13. E. H. Lieb, in Density Functional Methods in Physics, ed. R. M. Dreizler, NATO ASI Series B123 (Plenum, New York, 1985) p. 31.

  14. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105:7512 (1983).

    Article  Google Scholar 

  15. R. G. Pearson, J. Chem. Educ. 64:561 (1987).

    Article  Google Scholar 

  16. In earlier papers [18–20] we have expressed doubts about the validity of the PPLB EDF, which we hereby retract.

  17. Y. Zhang and W. Yang, Theor. Chem. Acc. 103:346 (2000).

    Google Scholar 

  18. M. H. Cohen and A. Wasserman, Israel J. Chem. 43:219 (2003).

    Article  Google Scholar 

  19. M. H. Cohen, Topics Curr. Chem. 183:143 (1996).

    Google Scholar 

  20. M. H. Cohen and A. Wasserman, in Proceedings of the International School of Physics “Enrico Fermi” Course CLV: The Physics of Complex Systems (New Advances and Perspectives), eds. F. Mallamace and H. E. Stanley (IOS Press, Amsterdam, 2004) pp. 253–295.

  21. R. G. Parr, P. W. Ayers, and R. Nalewajski, J. Phys. Chem. A 109:3957 (2005).

    Article  Google Scholar 

  22. R. F. Nalewajski and R. G. Parr, Proc. Natl. Acad. Sci. USA 97:8879 (2000).

    Article  PubMed  ADS  Google Scholar 

  23. F. L. Hirshfeld, Theor. Chim. Acta 44:129 (1977).

    Article  Google Scholar 

  24. S. M. Valone, J. Chem. Phys. 73:1344, 4653 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  25. M. H. Cohen, unpublished.

  26. P. Blanchard and E. Brüning, Variational Methods in Mathematical Physics (Springer, Berlin, 1982).

    Google Scholar 

  27. R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer, Berlin, 1990).

    MATH  Google Scholar 

  28. R. Car and M. Parinello, Phys. Rev. Lett. 55:2471 (1985).

    Article  PubMed  ADS  Google Scholar 

  29. R. G. Parr and W. Yang, J. Am. Chem. Soc. 106:4049 (1984).

    Article  Google Scholar 

  30. M. E. Mura, P. J. Knowles, and C. A. Reynolds, J. Chem. Phys. 106:9659 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, M.H., Wasserman, A. On Hardness and Electronegativity Equalization in Chemical Reactivity Theory. J Stat Phys 125, 1121–1139 (2006). https://doi.org/10.1007/s10955-006-9031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9031-0

Key words

Navigation