Journal of Statistical Physics

, Volume 122, Issue 6, pp 1095–1110 | Cite as

Phase Transitions for Uniformly Expanding Maps

Article

Abstract

Given a uniformly expanding map of two intervals we describe a large class of potentials admitting unique equilibrium measures. This class includes all Hölder continuous potentials but goes far beyond them. We also construct a family of continuous but not Hölder continuous potentials for which we observe phase transitions. This provides a version of the example in (9) for uniformly expanding maps.

Key Words

Expanding maps thermodynamical formalism equilibrium measures phase transitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aaronson, M. Denker, and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps. Trans. Amer. Math. Soc. 337(2): 495–548 (1993).MATHCrossRefMathSciNetGoogle Scholar
  2. J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Theory Dynam. Systems 23(5): 1383–1400 (2003).CrossRefMATHMathSciNetGoogle Scholar
  3. F. Hofbauer, Examples for the non-uniqueness of the equilibrium state, Trans. Amer. Math. Soc. 228: 223–241 (1978).CrossRefMathSciNetGoogle Scholar
  4. A. O. Lopes, The zeta function, non-differentiability of pressure, and the critical exponent of transition, Adv. Math. 101(2): 133–165 (1993).MATHCrossRefMathSciNetGoogle Scholar
  5. D. Mauldin and M. Urbański, Gibbs states on the symbolic space over an infinite alphabet, Israel J. Math. 125: 93–130 (2001).MATHCrossRefMathSciNetGoogle Scholar
  6. Y. Pesin and S. Senti, Equilibrium measures for some one-dimensional maps, Preprint (2005).Google Scholar
  7. Y. Pesin and S. Senti, Thermodynamical formalism associated with inducing schemes for one-dimensional maps, Moscow Mathematical Journal (2005).Google Scholar
  8. O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam. Systems 19(6): 1565–1593 (1999).CrossRefMATHMathSciNetGoogle Scholar
  9. O. Sarig, Phase transitions for countable Markov shifts, Comm. Math. Phys. 217(3): 555–577 (2001).MATHCrossRefADSMathSciNetGoogle Scholar
  10. O. Sarig, Existence of Gibbs measures for countable Markov shifts, Proc. Amer. Math. Soc. 131(6): 1751–1758 (electronic) (2003).CrossRefMATHMathSciNetGoogle Scholar
  11. O. Sarig, Thermodynamics formalism for null recurrent Markov shifts. Iseael J. Math. 121: 285–311 (2001).MATHCrossRefMathSciNetGoogle Scholar
  12. M. Yuri, Thermodynamic formalism for countable to one Markov systems, Trans. Amer. Math. Soc. 355(7): 2949–2971 (electronic) (2003).MATHCrossRefMathSciNetGoogle Scholar
  13. P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, Trans. Amer. Math. Soc. 236: 121–153 (1978).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of MathematicsPennsylvania State UniversityUniversity Park, State CollegeUSA

Personalised recommendations