Journal of Statistical Physics

, Volume 121, Issue 5–6, pp 779–803 | Cite as

Power Series for Solutions of the 3 \({\mathcal D}\)-Navier-Stokes System on R3

  • Yakov Sinai


In this paper we study the Fourier transform of the \(3 \mathcal{D}\)-Navier-Stokes System without external forcing on the whole space R3. The properties of solutions depend very much on the space in which the system is considered. In this paper we deal with the space \(\Phi (\alpha , \alpha )\) of functions \(v(k ) \, = \, \frac{c(k)}{|k|^\alpha}\) where \(\alpha = 2 + \epsilon , \, \epsilon > 0\) and c (k) is bounded, \(\sup_{k \in R^3 \, \smallsetminus \, 0} \; | c ( k ) | < \infty\). We construct the power series which converges for small t and gives solutions of the system for bounded intervals of time. These solutions can be estimated at infinity (in k-space) by \(\exp \{ - {\rm const} \, \sqrt{t} | k |\}\).


Navier-Stokes System Fourier transform power series 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bakhtin, Yu.Yu., Dinaburg, E.I., Sinai, Ya.G. 2004About solutions with infinite energy and enstrophy of Navier-Stokes systemRussian Math. Surveys5917CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bhattacharya, R., Chen, L., Dobson, S., Guenther, R., Orum, C., Ossiander, M., Thomann, E., Waymire, E. 2003Majorizing kernels and stochastic cascades with applications to incompressible Navier-Stokes equationsTAMS35550035040MathSciNetGoogle Scholar
  3. 3.
    Cannone M. Harmonic analysis tools for solving the incompressible Navier-Stokes equations. Handbook of Mathematics and Fluid Dynamics, Vol. 3 (North-Holland, pp. 161–244, 2004).Google Scholar
  4. 4.
    U. Frisch, Turbulence, The Legacy of A. N. Kolmogorov (Cambridge University Press, 296p. 1996).Google Scholar
  5. 5.
    Monin A.S., Yaglom A.M. Statistical Fluid Dynamics Vols. 1 and 2. MIT Press, (Cambridge, MA, 1971, 1975).Google Scholar
  6. 6.
    Oliver, M., Titi, E. 2000Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in R n J. Funct. Anal.172118CrossRefMathSciNetGoogle Scholar
  7. 7.
    Ya.G. Sinai, On local and global existence and uniqueness of solutions of the 3 \(\mathcal{D}\)-Navier-Stokes systems on R 3, in Perspective in Analysis (Springer-Verlag, 2005) (to appear).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Landau Institute of Theoretical PhysicsMoscowRussia

Personalised recommendations