Advertisement

Journal of Statistical Physics

, Volume 121, Issue 1–2, pp 3–35 | Cite as

Asymptotic Analysis of Lattice Boltzmann Boundary Conditions

  • Michael Junk
  • Zhaoxia Yang
Article

Abstract

In this article, we use a general method for the analysis of finite difference schemes to investigate lattice Boltzmann algorithms for Navier–Stokes problems with Dirichlet boundary conditions. Several link based boundary conditions for commonly used lattice Boltzmann BGK models are considered. With our method, the accuracy of the algorithms can be exactly predicted. Moreover, the analytical results can be used to construct new algorithms which is demonstrated with a corrected bounce back rule that requires only local evaluations but still yields second order accuracy for the velocity. The analysis is applicable to general geometries and instationary flows

Keywords

lattice Boltzmann equation bounce back rule asymptotic analysis incompressible Navier–Stokes equation Dirichlet boundary conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Junk M., Yang Z. Asymptotic analysis of finite difference methods, Appl. Math. Comp. (in press)Google Scholar
  2. 2.
    Jin, S., Xin, Z. 1995The relaxation schemes for systems of conservation laws in arbitrary space dimensionsComm. Pure Appl. Math48235276MathSciNetGoogle Scholar
  3. 3.
    Frisch, U., d’Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y., Rivet, J. 1987Lattice gas hydrodynamics in two and three dimensionsComplex Sys.1649707Google Scholar
  4. 4.
    Benzi, R., Succi, S., Vergassola, M. 1992The lattice-Boltzmann equation: Theory and applicationsPhys. Rep222145197CrossRefADSGoogle Scholar
  5. 5.
    Chen, H., Chen, S., Matthaeus, W. 1992Recovery of the Navier–Stokes equations using a Lattice-gas Boltzmann methodPhys. Rev. A4553395342ADSGoogle Scholar
  6. 6.
    Chen, S., Doolen, G. 1998Lattice Boltzmann method for fluid flowsAnnu. Rev. Fluid Mech30329364CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    He, X., Luo, L.-S. 1997A priori derivation of the lattice Boltzmann equationPhys. Rev E5563336336CrossRefADSGoogle Scholar
  8. 8.
    He, X., Luo, L.-S. 1997Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equationPhys. Rev E5668116817ADSGoogle Scholar
  9. 9.
    Y.Sone, Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers, in Advances in Kinetic Theory and Continuum Mechanics, Proceedings of a Symposium Held in Honour of Henri Cabannes, R.Gatignol and J.Soubbaramayer, eds. (Springer, Berlin, 1990), pp. 19–31.Google Scholar
  10. 10.
    Inamuro, T., Yoshino, M., Ogino, F. 1997Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds numberPhys. Fluids935353542CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Junk, M., Klar, A. 2000Discretizations for the incompressible Navier–Stokes equations based on the lattice-Boltzmann methodSIAM J. Sci. Comput22119CrossRefMathSciNetGoogle Scholar
  12. 12.
    Junk, M. 2001A finite difference interpretation of the lattice Boltzmann methodNumer. Methods Partial Differ. Eq.17383402zbMATHMathSciNetGoogle Scholar
  13. 13.
    M.Junk, A.Klar, and L.-S. Luo, Asymptotic analysis of the lattice Boltzmann equation, preprint, submitted for publication.Google Scholar
  14. 14.
    Ginzbourg, I., d’Humières.,  2003The multireflection boundary conditions for lattice Boltzmann modelsPhys. Rev E68066614ADSMathSciNetGoogle Scholar
  15. 15.
    Mei, R., Luo, L.-S., Shyy, W. 1999An accurate curved boundary treatment in the lattice Boltzmann methodJ. Comput. Phys155307330CrossRefADSGoogle Scholar
  16. 16.
    Junk, M., Yong, W.-A. 2003Rigorous Navier–Stokes limit of the lattice Boltzmann equationAsymp. Anal.35165184MathSciNetGoogle Scholar
  17. 17.
    R.Mei, L.-S. Luo, and D.d’Humieres, Initializations of lbe simulations, Preprint.Google Scholar
  18. 18.
    Skordos, P. 1993Initial and boundary conditions for the Lattice Boltzmann methodPhys. Rev E4848234842ADSMathSciNetGoogle Scholar
  19. 19.
    Bouzidi, M., Firdaouss, M., Lallemand, P. 2001Momentum transfer of a Boltzmann-lattice fluid with boundariesPhys. Fluids1334523459CrossRefADSGoogle Scholar
  20. 20.
    Rohde, M., Kandhai, D., Derksen, J.J., Akker, H.E.A.V. 2003Improved bounce-back methods for no-slip walls in lattice-boltzmann schemes: Theory and simulationsPhys. Rev E67066703CrossRefADSGoogle Scholar
  21. 21.
    Ginzbourg, I., d’Humières.,  1996Local second-order boundary methods for lattice Boltzmann modelsJ. Stat. Phys845/6CrossRefGoogle Scholar
  22. 22.
    Filippova, O., Hänel, D. 1998Grid refinement for lattice-BGK modelsJ. Comp. Phys147219228Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.FB MathematikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations