Journal of Statistical Physics

, Volume 122, Issue 4, pp 799–832 | Cite as

A Numerical Approach to Copolymers at Selective Interfaces

  • Francesco Caravenna
  • Giambattista Giacomin
  • Massimiliano Gubinelli
Article

Abstract

We consider a model of a random copolymer at a selective interface which undergoes a localization/delocalization transition. In spite of the several rigorous results available for this model, the theoretical characterization of the phase transition has remained elusive and there is still no agreement about several important issues, for example the behavior of the polymer near the phase transition line. From a rigorous viewpoint non coinciding upper and lower bounds on the critical line are known.

In this paper we combine numerical computations with rigorous arguments to get to a better understanding of the phase diagram. Our main results include:
  • Various numerical observations that suggest that the critical line lies strictly in between the two bounds.

  • A rigorous statistical test based on concentration inequalities and super–additivity, for determining whether a given point of the phase diagram is in the localized phase. This is applied in particular to show that, with a very low level of error, the lower bound does not coincide with the critical line.

  • An analysis of the precise asymptotic behavior of the partition function in the delocalized phase, with particular attention to the effect of rare atypical stretches in the disorder sequence and on whether or not in the delocalized regime the polymer path has a Brownian scaling.

  • A new proof of the lower bound on the critical line. This proof relies on a characterization of the localized regime which is more appealing for interpreting the numerical data.

Key Words

Disordered Models Copolymers Localization Transition Large Deviations Corrections to Laplace estimates Concentration of Measure Transfer Matrix Approach Statistical Tests 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Albeverio and X. Y. Zhou, Free energy and some sample path properties of a random walk with random potential, J. Statist. Phys. 83, 573–622 (1996).CrossRefMathSciNetGoogle Scholar
  2. 2.
    M. Biskup and F. den Hollander, A heteropolymer near a linear interface, Ann. Appl. Probab. 9, 668–687 (1999).MathSciNetGoogle Scholar
  3. 3.
    T. Bodineau and G. Giacomin, On the localization transition of random copolymers near selective interfaces, J. Statist. Phys. 117, 801–818 (2004).CrossRefMathSciNetGoogle Scholar
  4. 4.
    E. Bolthausen and G. Giacomin, Periodic copolymers at selective interfaces: A large deviations approach, Ann. Appl. Probab. 15, 963–983 (2005).CrossRefMathSciNetGoogle Scholar
  5. 5.
    E. Bolthausen and F. den Hollander, Localization transition for a polymer near an interface, Ann. Probab. 25, 1334–1366 (1997).MathSciNetGoogle Scholar
  6. 6.
    R. Bundschuh and T. Hwa, Statistical mechanics of secondary structures formed by random RNA sequences, Phys. Rev. E 65, 031903 (22 pages) (2002).Google Scholar
  7. 7.
    F. Caravenna and G. Giacomin, On constrained annealed bounds for linear chain pinning models, Electron. Comm. Probab. 10, 179–189 (2005).MathSciNetGoogle Scholar
  8. 8.
    F. Caravenna, G. Giacomin and L. Zambotti, A renewal theory approach to periodic inhomogeneous polymer models, preprint (2005). math.PR/0507178Google Scholar
  9. 9.
    M. S. Causo and S. G. Whittington, A Monte Carlo investigation of the localization transition in random copolymers at an interface, J. Phys. A: Math. Gen. 36, L189–L195 (2003).CrossRefADSGoogle Scholar
  10. 10.
    A. Dembo and O. Zeitouni, Large deviations techniques and applications, 2nd Ed., (Springer–Verlag, New York 1998).Google Scholar
  11. 11.
    J.–D. Deuschel, G. Giacomin and L. Zambotti, Scaling limits of equilibrium wetting models in (1 + 1)–dimension, Probab. Theory Rel. Fields 119, 471–500 (2005).MathSciNetGoogle Scholar
  12. 12.
    W. Feller, An introduction to probability theory and its applications, Vol. I, 3rd Ed, (John Wiley & Sons, Inc., New York–London–Sydney 1968).Google Scholar
  13. 13.
    D. S. Fisher, Critical behavior of random transverse-field Ising spin chains, Phys. Rev. B 51, 6411–6461 (1995).ADSGoogle Scholar
  14. 14.
    G. Giacomin, Localization phenomena in random polymer models, preprint (2004), available on the web page of the author.Google Scholar
  15. 15.
    G. Giacomin and F. L. Toninelli, Estimates on path delocalization for copolymers at interfaces, Probab. Theory Rel. Fields. (Online first).Google Scholar
  16. 16.
    T. Garel, D. A. Huse, S. Leibler and H. Orland, Localization transition of random chains at interfaces, Europhys. Lett. 8, 9–13 (1989).ADSGoogle Scholar
  17. 17.
    P. Le Doussal, C. Monthus and D. S. Fisher, Random walkers in one-dimensional random environments: Exact renormalization group analysis, Phys. Rev. E 59(3), 4795–4840 (1999).Google Scholar
  18. 18.
    M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs Vol. 89, American Mathematical Society (2001).Google Scholar
  19. 19.
    M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. on Mod. and Comp. Simul. 8, 3–30 (1998).Google Scholar
  20. 20.
    C. Monthus, On the localization of random heteropolymers at the interface between two selective solvents, Eur. Phys. J. B 13, 111–130 (2000).ADSGoogle Scholar
  21. 21.
    C. Monthus, T. Garel and H. Orland, Copolymer at a selective interface and two dimensional wetting: A grand canonical approach, Eur. Phys. J. B 17, 121–130 (2000).CrossRefADSGoogle Scholar
  22. 22.
    T. Morita, Statistical mechanics of quenched solid solutions with application to magnetically dilute alloys, J. Math. Phys. 5, 1401–1405 (1966).Google Scholar
  23. 23.
    D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3rd Ed., (Springer-Verlag, Berlin 1994).Google Scholar
  24. 24.
    Ya. G. Sinai, A random walk with a random potential, Theory Probab. Appl. 38, 382–385 (1993).CrossRefMathSciNetGoogle Scholar
  25. 25.
    C. E. Soteros and S. G. Whittington, The statistical mechanics of random copolymers, J. Phys. A: Math. Gen. 37, R279–R325.Google Scholar
  26. 26.
    S. Stepanow, J.-U. Sommer and I. Ya. Erukhimovich, Localization transition of random copolymers at interfaces, Phys. Rev. Lett. 81, 4412–4416 (1998).CrossRefADSGoogle Scholar
  27. 27.
    A. Trovato and A. Maritan, A variational approach to the localization transition of heteropolymers at interfaces, Europhys. Lett. 46, 301–306 (1999).CrossRefADSGoogle Scholar
  28. 28.
    R Development Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria (2004). ISBN 3-900051-07-0. URL http://www.R-project.org
  29. 29.
    C. Ané, S. Blachére, D. Chafaï, P. Fougéres, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, Sur les inégalités de Sobolev Logarithmiques, Panoramas et Synthéses, 10, Sociét´ Mathématique de France 2000.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Francesco Caravenna
    • 1
    • 2
  • Giambattista Giacomin
    • 3
  • Massimiliano Gubinelli
    • 4
  1. 1.Dipartimento di Matematica e ApplicazioniUniversità di Milano-BicoccaMilanoItaly
  2. 2.Laboratoire de Probabilités de P 6 & 7 (CNRS U.M.R. 7599)Université Paris 7–Denis Diderot, U.F.R. MathematiquesParis cedex 05France
  3. 3.Laboratoire de Probabilités de P 6 & 7 (CNRS U.M.R. 7599)Université Paris 7–Denis Diderot, U.F.R. MathematiquesParis cedex 05France
  4. 4.Dipartimento di Matematica Applicata “U. Dini,”Università di PisaPisaItaly

Personalised recommendations