Advertisement

Journal of Statistical Physics

, Volume 122, Issue 1, pp 15–57 | Cite as

Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions

  • Nathan Clisby
  • Barry M. McCoy
Article

Abstract

We evaluate the virial coefficients Bk for \(k\leq 10\) for hard spheres in dimensions \(D=2,\cdots,8.\) Virial coefficients with k even are found to be negative when \(D\geq 5. \) This provides strong evidence that the leading singularity for the virial series lies away from the positive real axis when \(D\geq 5\). Further analysis provides evidence that negative virial coefficients will be seen for some k > 10 for D = 4, and there is a distinct possibility that negative virial coefficients will also eventually occur for D = 3.

Key Words

Hard spheres virial expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. van der Waals, Proc. Kon. Acad. V. Wetensch, Amsterdam, 1:138 (1899).Google Scholar
  2. 2.
    L. Boltzmann, Proc. Sect. Sci. K. Akad. Wet. (Amsterdam), (1899).Google Scholar
  3. 3.
    J. J. van Laar, Proc. Kon. Acad. V. Wetensch, Amsterdam, 1:273 (1899).Google Scholar
  4. 4.
    B. J. Alder and T. E. Wainwright, Phase transition for a hard sphere system.J. Chem. Phys. 27:1208–1209 (1957).CrossRefGoogle Scholar
  5. 5.
    W. W. Wood and J. D. Jacobson, Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres. J. Chem. Phys. 27:1207–1208 (1957).Google Scholar
  6. 6.
    J. S. Rowlinson, The virial expansion in two dimensions, Mol. Phys. 7:593–594 (1964).MathSciNetGoogle Scholar
  7. 7.
    P. C. Hemmer, Virial Coefficients for the Hard-Core Gas in Two Dimensions. J. Chem. Phys. 42:1116–1118 (1964).MathSciNetGoogle Scholar
  8. 8.
    N. Clisby and B. M. McCoy, Analytical calculation of $B_4$ for hard spheres in even dimensions. J. Stat. Phys. 114:1343–1361 (2004).MathSciNetGoogle Scholar
  9. 9.
    I. Lyberg, The Fourth Virial Coefficient of a Fluid of Hard Spheres in Odd Dimensions. J. Stat. Phys. 119:747–764 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth and A. H. Teller, Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 21:1087–1092 (1953).CrossRefGoogle Scholar
  11. 11.
    M. N. Rosenbluth and A. W. Rosenbluth, Further Results on Monte Carlo Equations of State. J. Chem. Phys. 22:881–884 (1954).Google Scholar
  12. 12.
    F. H. Ree and W. G. Hoover, Fifth and sixth virial coefficients for hard spheres and hard discs. J. Chem. Phys. 40:939–950 (1964).MathSciNetGoogle Scholar
  13. 13.
    F. H. Ree and W. G. Hoover, Reformulation of the Virial Series for Classical Fluids. J. Chem. Phys. 41:1635–1645 (1964).MathSciNetGoogle Scholar
  14. 14.
    F. H. Ree and W. G. Hoover, Seventh virial coefficients for hard spheres and hard discs. J. Chem. Phys. 46:4181–4196 (1967).CrossRefGoogle Scholar
  15. 15.
    E. J. Janse van Rensburg, Virial coefficients for hard discs and hard spheres. J. Phys. A 26:4805–4818 (1993).ADSGoogle Scholar
  16. 16.
    A. Y. Vlasov, X. M. You and A. J. Masters, Monte–Carlo integration for virial coefficients re–visited: hard convex bodies, spheres with a square–well potential and mixtures of hard spheres. Mol. Phys. 100:3313–3324 (2002).CrossRefGoogle Scholar
  17. 17.
    J. Kolafa, S. Labiacute;k and A. Malijevský, Accurate equation of state of the hard sphere fluid in stable and metastable regions. Phys. Chem. Chem. Phys. 6:2335–2340 (2004).CrossRefGoogle Scholar
  18. 18.
    S. Labík, J. Kolafa and A. Malijevský, Virial coefficients of hard spheres and hard discs up to the ninth. Phys. Rev. E 71:021105 (2005).CrossRefADSGoogle Scholar
  19. 19.
    F. H. Ree and W. G. Hoover, On the signs of the hard sphere virial coefficients. J. Chem. Phys. 40:2048–2049 (1964).MathSciNetGoogle Scholar
  20. 20.
    M. Bishop, A. Masters and J. H. R. Clarke, Equation of state of hard and Weeks–Chandler–Anderson hyperspheres in four and five dimensions. J. Chem. Phys.110:11449–11453 (1999).CrossRefADSGoogle Scholar
  21. 21.
    M. Bishop, A. Masters and A. Y. Vlasov, Higher virial coefficients of four and five dimensional hard hyperspheres. J. Chem. Phys. 121:6884–6886 (2004).CrossRefADSGoogle Scholar
  22. 22.
    M. Bishop, A. Masters and A. Y. Vlasov, The Eighth Virial Coefficient of Four and Five Dimensional Hard Hyperspheres. J. Chem. Phys. 122:154502 (2005).Google Scholar
  23. 23.
    M. Bishop, P. A. Whitlock and D. Klein, The Structure of Hyperspherical Fluids in Various Dimensions. J. Chem. Phys. 122:074508 (2005).Google Scholar
  24. 24.
    M. Bishop and P. A. Whitlock. The Equation of State of Hard Hyperspheres in Four and Five Dimensions. J. Chem. Phys. 123: 014507 (2005).CrossRefADSGoogle Scholar
  25. 25.
    H. L. Frisch, N. River and D. Wyler, Classical Hard-Sphere Fluid in Infinitely Many Dimensions. Phys. Rev. Lett. 54:2061–2063 (1985).CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    H. L. Frisch and J. K. Percus, High dimensionality as an organizing device for classical fluids. Phys. Rev. E 60:2942–2948 (1999).CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    N. Clisby and B. M. McCoy, Negative virial coefficients and the dominance of loose packed diagrams for $D$–dimensional hard spheres. J. Stat. Phys. 114:1361–1392 (2004).MathSciNetGoogle Scholar
  28. 28.
    N. Clisby, Negative Virial Coefficients for Hard Spheres. PhD thesis, Stony Brook University, Stony Brook, New York, May (2004).Google Scholar
  29. 29.
    K. W. Kratky, A New Graph Expansion of Virial Coefficients. J. Stat. Phys. 27:533–551 (1982).CrossRefMathSciNetGoogle Scholar
  30. 30.
    J. E. Mayer and M. G. Mayer, Statistical Mechanics. Wiley (1940).Google Scholar
  31. 31.
    J. K. Percus and G. J. Yevick, Analysis of Classical Statistical Mechanics by Means of Collective Coordinates. Phys. Rev. 110:1–13 (1958).CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    J. K. Percus (eds.) The Pair Distribution Function in Classical Statistical Mechanics, in H. L. Frisch and J. L. Lebowitz, The Equilibrium Theory of Classical Fluids, pp. II–33–II–1733. (W. A. Benjamin, Inc., New York 1964).Google Scholar
  33. 33.
    B. D. McKay, Practical Graph Isomorphism. Congressus Numerantium, 30:45–87 (1981).zbMATHMathSciNetGoogle Scholar
  34. 34.
    H. N. Gabow and E. W. Myers, Finding All Spanning Trees of Directed and Undirected Graphs. SIAM J. Comput. 7:280–287 (1978).CrossRefMathSciNetGoogle Scholar
  35. 35.
    R. M. Ziff, Four-tap shift-register-sequence random-number generator. Comp. in Phys. 12:385–392 (1998).ADSGoogle Scholar
  36. 36.
    D. E. Knuth, The Art of Computer Programming: Fundamental Algorithms, Addison-Wesley, third edition (1997) Vol 1.Google Scholar
  37. 37.
    S. Banerjia and R. A. Dwyer, Generating Random Points in a Ball. Commun. Stat. Sim. 22:1205–1209 (1993).MathSciNetGoogle Scholar
  38. 38.
    D. J. Rose, R. E. Tarjan and G. S. Lueker, Algorithmic Aspects of Vertex Elimination on Graphs. SIAM J. Comput. 5:266–283 (1976).CrossRefMathSciNetGoogle Scholar
  39. 39.
    R. E. Tarjan and M. Yannakakis, Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs. SIAM J. Comput. 13:566–579 (1984).CrossRefMathSciNetGoogle Scholar
  40. 40.
    R. E. Tarjan, Decomposition by Clique Separators. Disc. Math. 55:221–232 (1985).CrossRefADSzbMATHMathSciNetGoogle Scholar
  41. 41.
    S. H. Whitesides, An Algorithm for Finding Clique Cut-Sets. Inf. Proc. Lett. 12:31–32 (1981).CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    B. J. Alder and T. E. Wainright, Phase Transition in Elastic Disks. Phys. Rev. 127:359–361 (1962).CrossRefADSGoogle Scholar
  43. 43.
    W. W. Wood, Monte Carlo studies of simple liquid models, in Physics of Simple Liquids, (North Holland, Amsterdam 1968) pp. 115–2345.Google Scholar
  44. 44.
    J. P. J. Michels and N. J. Trappeniers, Dynamical computer simulations on hard hyperspheres in four- and five-dimensional space. Phys. Lett. 104:425–429 (1984).Google Scholar
  45. 45.
    A. Jaster, Computer simulations of the two-dimensional melting transition using hard disks. Phys. Rev. E 59:2594–2602 (1999).CrossRefADSGoogle Scholar
  46. 46.
    J. G. Dash, History of the search for continuous melting. Rev. Mod. Phys. 71:1737–1743 (1999).CrossRefADSGoogle Scholar
  47. 47.
    K. Binder, S. Sengupta and P. Nielaba, The liquid–solid transition of hard discs: first-order transition or Kosterlitz–Thouless–Halperin–Nelson–Young scenario? J. Phys.: Condens. Matter 14:2323–2333 (2002).CrossRefADSGoogle Scholar
  48. 48.
    A. Jaster, The hexatic phase of the two-dimensional hard disk system. Phys. Lett. A 330:120–125 (2004).CrossRefADSGoogle Scholar
  49. 49.
    B. J. Alder and T. E. Wainwright, Studies in molecular dynamics 2: behavior of small numbers of elastic hard spheres. J. Chem. Phys. 33:1439 (1960).CrossRefMathSciNetGoogle Scholar
  50. 50.
    W. G. Hoover and F. H. Ree, Melting transition and communal entropy for hard spheres. J. Chem. Phys. 49:3609–3617 (1968).Google Scholar
  51. 51.
    G. Nebe and N. J. A. Sloane, A Catalogue of Lattices, http://www.research.att.com~njas/lattices/index.html.
  52. 52.
    J. L. Lebowitz and O. Penrose, Convergence of virial expansion. J. Math. Phys. 5:841 (1964).CrossRefMathSciNetGoogle Scholar
  53. 53.
    M. E. Fisher, The Nature of Critical Points, in Lectures in Theoretical Physics VII, (University of Colorado Press, Boulder, Colorado 1965) pp. 73–109.Google Scholar
  54. 54.
    S. N. Isakov, Nonanalytic Features of the First Order Phase Transition in the Ising Model. Commun. Math. Phys. 95:427–443 (1984).CrossRefMathSciNetGoogle Scholar
  55. 55.
    J. Groeneveld, Two Theorems on Classical Many-Particle Systems. Phys. Lett. 3:50–51 (1962).ADSzbMATHMathSciNetGoogle Scholar
  56. 56.
    M. E. Fisher, Bounds for the Derivatives of the Free Energy and the Pressure of a Hard-Core System near Close Packing. J. Chem. Phys. 42:3852–3856 (1965).CrossRefMathSciNetGoogle Scholar
  57. 57.
    W. G. Hoover, Bounds on the Configurational Integral for Hard Parallel Squares and Cubes. J. Chem. Phys. 43:371–374 (1965).MathSciNetGoogle Scholar
  58. 58.
    E. Thiele, Equation of State for Hard Spheres. J. Chem. Phys. 39:474–479 (1963).Google Scholar
  59. 59.
    M. S. Wertheim, Exact Solution of the Percus-Yevick Integral Equation for Hard Spheres. Phys. Rev. Lett. 10:321–323 (1963).CrossRefADSzbMATHMathSciNetGoogle Scholar
  60. 60.
    M. S. Wertheim, Analytic solution of the Percus–Yevick equation. J. Math Phys. 5:643 (1964).CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    H. Reiss, H. L. Frisch and J. L. Lebowitz, Statistical mechanics of rigid spheres. J. Chem. Phys. 31:369–380 (1959).CrossRefMathSciNetGoogle Scholar
  62. 62.
    E. A. Guggenheim, Variations on van der Waals equation of state for high densities. Mol. Phys. 9:199 (1965).Google Scholar
  63. 63.
    N. F. Carnahan and K. E. Starling, Equation of State for Nonattracting Rigid Spheres. J. Chem. Phys. 51:635–636 (1969).CrossRefGoogle Scholar
  64. 64.
    J. I. Goldman and J. A. White, Equation of state for the hard-sphere gas. J. Chem. Phys. 89:6403–6405 (1988).CrossRefADSGoogle Scholar
  65. 65.
    R. Hoste and J. D. Dael, Equation of state for hard–sphere and hard–disk systems. J. Chem Soc. Faraday Trans. 2 80:477–488 (1984).CrossRefGoogle Scholar
  66. 66.
    J. D. Bernal and J. Mason, Co–ordination of randomly packed spheres. Nature 188:910–911 (1960).Google Scholar
  67. 67.
    J. D. Bernal, Bakerian Lecture 1962 – The structure of liquids. Proc. Roy. Soc. Lond. A 280:299–322 (1964).ADSGoogle Scholar
  68. 68.
    G. D. Scott, Packing of equal spheres. Nature 188:908–909 (1960).zbMATHGoogle Scholar
  69. 69.
    J. L. Finney, Random packings and the structure of simple liquids I. The geometry of random close packing. Proc. Roy. Soc. Lond. A 319:479–493 (1970).ADSGoogle Scholar
  70. 70.
    E. J. Le Fevre, Equation of State for Hard-sphere Fluid. Nature Phys. 235:20 (1972).ADSGoogle Scholar
  71. 71.
    D. Ma and G. Ahmadi, An equation of state for dense rigid sphere gases. J. Chem. Phys. 84:3449 (1986).CrossRefADSGoogle Scholar
  72. 72.
    Y. Song, R. M. Stratt and A. E. Mason, The equation of state of hard spheres and the approach to random closest packing. J. Chem. Phys. 88:1126–1133 (1988).CrossRefADSGoogle Scholar
  73. 73.
    S. Jasty, M. Al-Naghy and M. de Llano, Critical exponent for glassy packing of rigid spheres and disks. Phys. Rev. A 35:1376–1381 (1987).CrossRefADSMathSciNetGoogle Scholar
  74. 74.
    S. Torquato, Mean Nearest–Neighbor Distance in Random Packings of Hard $D$–Dimensional Spheres. Phys. Rev. Lett. 74:2156–2159 (1995).CrossRefADSGoogle Scholar
  75. 75.
    S. Torquato, Nearest–neighbor statistics for packings of hard spheres and disks. Phys. Rev. E 51:3170–3182 (1995).CrossRefADSGoogle Scholar
  76. 76.
    B. C. Freasier and D. J. Isbister, A remark on the Percus–Yevick approximation in higher dimensions. Mol. Phys. 42:927–936 (1981).MathSciNetGoogle Scholar
  77. 77.
    E. Leutheusser, Exact Solution of the Percus–Yevick Equation for a Hard–Core Fluid in Odd Dimensions. Physica A 127:667–676 (1984).CrossRefADSzbMATHMathSciNetGoogle Scholar
  78. 78.
    M. Robles, M. Löpez de Haro and A. Santos, Equation of state of a seven-dimensional hard-sphere fluid. Percus–Yevick theory and molecular-dynamics simulations. J. Chem. Phys. 120:9113–9122 (2004).CrossRefGoogle Scholar
  79. 79.
    A. Baram and M. Luban, Divergence of the virial series for hard discs and hard spheres at closest packing. J. Phys. C: Solid St. Phys. 12:L659–L664 (1979).CrossRefADSGoogle Scholar
  80. 80.
    I. C. Sanchez, Virial coefficients and close–packing of hard spheres and disks. J. Chem. Phys. 101:7003–7006 (1994).CrossRefADSGoogle Scholar
  81. 81.
    D. S. Gaunt and G. S. Joyce, Virial expansions for hard-core fluids. J. Phys. A 13:L211–L216 (1980).ADSGoogle Scholar
  82. 82.
    A. J. Guttmann, Asymptotic Analysis of Power-Series Expansions, in C. Domb and J. Lebowitz, editors, Phase Transitions and Critical Phenomena, volume 13, chapter 1, (Academic Press, 1989) pp. 1–234.Google Scholar
  83. 83.
    R. J. Baxter Hard hexagons – exact solution. J. Phys. A 13:L61–70 (1980).CrossRefADSGoogle Scholar
  84. 84.
    M. P. Richey and C. A. Tracy, Equation of state and isothermal compressibility for the hard hexagon model in the disordered regime. J. Phys. A 20:L1121–L1126 (1987).CrossRefADSMathSciNetGoogle Scholar
  85. 85.
    G. S. Joyce, On the Hard-Hexagon Model and the Theory of Modular Functions. Phil. Trans. R. Soc. Lond. A 325:643–702 (1988).ADSzbMATHMathSciNetGoogle Scholar
  86. 86.
    R. J. Baxter, Three-Colorings of the Square Lattice: A Hard Squares Model. J. Math. Phys. 11:3116–3124 (1970).zbMATHMathSciNetGoogle Scholar
  87. 87.
    W. G. Hoover and A. G. de Rocco, Sixth and Seventh Virial Coefficients for the Parallel Hard-Cube Model. J. Chem. Phys. 36:3141–3161 (1962).CrossRefGoogle Scholar
  88. 88.
    G. E. Uhlenbeck and G. W. Ford, The Theory of Linear Graphs with Applications to the Theory of the Virial Development of the Properties of Gases. In Studies in Statistical Mechanics, (North Holland 1962) Vol 1, pp. 119–211.Google Scholar
  89. 89.
    A. Baram and J. S. Rowlinson, Studies of the Gaussian model 1. The one-component system. Mol. Phys. 74:707–713 (1991).Google Scholar
  90. 90.
    A. J. Guttmann and G. S. Joyce, On a new method of series analysis in lattice statistics. J. Phys. A 5:L81–L84 (1972).CrossRefADSGoogle Scholar
  91. 91.
    G. S. Joyce and A. J. Guttmann, A New Method of Series Analysis, In P. R. Graves-Morris, editor, Padé Approximants and Their Applications, (Academic Press 1973) pp. 163–167.Google Scholar
  92. 92.
    D. L. Hunter and G. A. Baker, Methods of Series Analysis. I. Comparison of Current Methods Used in the Theory of Critical Phenomena. Phys. Rev. B 7:3346–3376 (1973).CrossRefADSGoogle Scholar
  93. 93.
    D. L. Hunter and G. A. Baker, Methods of series analysis. III. Integral approximant methods. Phys. Rev. B 19:3808–3821 (1979).CrossRefADSGoogle Scholar
  94. 94.
    M. E. Fisher and H. Au-Yang, Inhomogeneous differential approximants for power series. 12:1677–1692 (1979).Google Scholar
  95. 95.
    N. Clisby, Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions - Collection of Tables, http://www.ms.unimelb.edu.au~nclisby/papers/papers.html.

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.ARC Centre of Excellence for Mathematics and Statistics of Complex SystemsThe University of MelbourneParkville VictoriaAustralia
  2. 2.C. N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.

Personalised recommendations