Journal of Statistical Physics

, Volume 122, Issue 1, pp 137–167 | Cite as

Nonergodicity of a Time Series Obeying Lévy Statistics

  • Gennady Margolin
  • Eli Barkai
Article

Abstract

Time-averaged autocorrelation functions of a dichotomous random process switching between 1 and 0 and governed by wide power law sojourn time distribution are studied. Such a process, called a Lévy walk, describes dynamical behaviors of many physical systems, fluorescence intermittency of semiconductor nanocrystals under continuous laser illumination being one example. When the mean sojourn time diverges the process is non-ergodic. In that case, the time average autocorrelation function is not equal to the ensemble averaged autocorrelation function, instead it remains random even in the limit of long measurement time. Several approximations for the distribution of this random autocorrelation function are obtained for different parameter ranges, and favorably compared to Monte Carlo simulations. Nonergodicity of the power spectrum of the process is briefly discussed, and a nonstationary Wiener-Khintchine theorem, relating the correlation functions and the power spectrum is presented. The considered situation is in full contrast to the usual assumptions of ergodicity and stationarity.

Key Words

Nonergodicity Time series Lévy statistics Power law Correlation function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Allegrini, P. Grigolini, L. Palatella and B. J. West, Non-Poisson dichotomous noise: Higher-order correlation functions and aging, Phys. Rev. E 70, 046118 (2004).CrossRefADSGoogle Scholar
  2. 2.
    W. Nadler and D. L. Stein, Biological transport processes and space dimension, Proc. Natl. Acad. Sci. USA 88, 6750–6754 (1991).ADSGoogle Scholar
  3. 3.
    I. Goychuk and P. Hänggi, Ion channel gating: A first-passage time analysis of the Kramers type, Proc. Natl. Acad. Sci. USA 99, 3552–3556 (2002).CrossRefADSGoogle Scholar
  4. 4.
    T. G. Dewey, From microarrays to networks: mining expression time series, Drug Discovery Today 7, S170–S175 (2002).CrossRefGoogle Scholar
  5. 5.
    S. Roy, I. Bose and S. S. Manna, A cooperative stochastic model of gene expression, International J. Modern Phys. C 12, 413–420 (2001).ADSGoogle Scholar
  6. 6.
    N. Masuda and K. Aihara, Ergodicity of spike trains: When does trial averaging make sense?, Neural Computation 15, 1341–1372 (2003).Google Scholar
  7. 7.
    E. Korobkova, T. Emonet, J. M. G. Vilar, T. S. Shimizu and P. Cluzel, From molecular noise to behavioural variability in a single bacterium, Nature 428, 574–578 (2004).CrossRefADSGoogle Scholar
  8. 8.
    M. Haase, C. G. Hübner, E. Reuther, A. Herrmann, K. Müllen and Th. Basché, Exponential and power-law kinetics in single-molecule fluorescence intermittency, J. Phys. Chem. B 108, 10445–10450 (2004).CrossRefGoogle Scholar
  9. 9.
    M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, Fluorescence intermittency in single cadmium selenide nanocrystals, Nature 383, 802–804 (1996).CrossRefADSGoogle Scholar
  10. 10.
    M. Kuno, D. P. Fromm, S. T. Johnson, A. Gallagher and D. J. Nesbitt, Modeling distributed kinetics in isolated semiconductor quantum dots, Phys. Rev. B 67, 125304 (2003).CrossRefADSGoogle Scholar
  11. 11.
    K. T. Shimizu, R. G. Neuhauser, C. A. Leatherdale, S. A. Empedocles, W. K. Woo and M. G. Bawendi, Blinking statistics in single semiconductor nanocrystal quantum dots Phys. Rev. B 63, 205316 (2001).ADSGoogle Scholar
  12. 12.
    G. Messin, J. P. Hermier, E. Giacobino, P. Desbiolles and M. Dahan, Bunching and antibunching in the fluorescence of semiconductor nanocrystals, Optics Letters 26, 1891–1893 (2001).ADSGoogle Scholar
  13. 13.
    X. Brokmann, J. P. Hermier, G. Messin, P. Desbiolles, J.-P. Bouchaud, and M. Dahan, Statistical aging and nonergodicity in the fluorescence of single nanocrystals, Phys. Rev. Lett. 90, 120601 (2003).CrossRefADSGoogle Scholar
  14. 14.
    G. Zumofen, J. Hohlbein and C. G. Hübner, Recurrence and photon statistics in fluorescence fluctuation spectroscopy, Phys. Rev. Lett. 93, 260601 (2004).CrossRefADSGoogle Scholar
  15. 15.
    C. Godréche and J. M. Luck, Statistics of the occupation time of renewal processes, J. Stat. Phys. 104, 489–524(2001).Google Scholar
  16. 16.
    A. Baldassarri, J. P. Bouchaud, I. Dornic, and C. Godréche, Statistics of persistent events: An exactly soluble model, Phys. Rev. E 59, R20–R23 (1999).CrossRefADSGoogle Scholar
  17. 17.
    J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Physics Reports 195, 127–293 (1990).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    J. Klafter, M. F. Shlesinger, and G. Zumofen, Beyond Brownian motion, Phys. Today 49(2), 33–39 (1996).Google Scholar
  19. 19.
    R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics Reports 339, 1–77 (2000).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    E. Barkai, Y. Jung and Silbey, Theory of single-molecule spectroscopy: beyond the ensemble average, Annu. Rev. Phys. Chem. 55, 457–507 (2004).CrossRefGoogle Scholar
  21. 21.
    G. Zumofen, and J. Klafter, Scale-invariant motion in intermittent chaotic systems, Phys. Rev. E 47, 851–863 (1993).ADSGoogle Scholar
  22. 22.
    E. Marinari and G. Parisi, On toy ageing, J. Phys. A 26, L1149–L1156 (1993).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    J. P. Bouchaud, Weak ergodicity breaking and aging in disordered systems, J. Phys. I France 2, 1705–1713 (1992).CrossRefGoogle Scholar
  24. 24.
    E. Barkai, and Y. C. Cheng, Aging continuous time random walks, J. Chem. Phys. 118, 6167–6178 (2003).CrossRefADSGoogle Scholar
  25. 25.
    E. Barkai, Aging in subdiffusion generated by a deterministic dynamical system, Phys. Rev. Lett. 90, 104101 (2003).CrossRefADSGoogle Scholar
  26. 26.
    G. Margolin and E. Barkai, Aging correlation functions for blinking nanocrystals, and other on-off stochastic processes, J. Chem. Phys. 121, 1566–1577 (2004).CrossRefADSGoogle Scholar
  27. 27.
    G. Aquino, L. Palatella and P. Grigolini, Absorption and emission in the non-Poissonian case, Phys. Rev. Lett. 93, 050601 (2004).CrossRefADSGoogle Scholar
  28. 28.
    R. Verberk, and M. Orrit, Photon statistics in the fluorescence of single molecules and nanocrystals: Correlation functions versus distributions of on- and off-times, J. Chem. Phys. 119, 2214–2222 (2003).CrossRefADSGoogle Scholar
  29. 29.
    G. Margolin and E. Barkai, Nonergodicity of blinking nanocrystals and other Lévy-walk processes, Phys. Rev. Lett. 94, 080601 (2005).CrossRefADSGoogle Scholar
  30. 30.
    J. Lamperti, An occupation time theorem for a class of stochastic processes, Trans. Amer. Math. Soc. 88, 380–387 (1958).MATHMathSciNetGoogle Scholar
  31. 31.
    W. Feller, An Introduction to Probability Theory and its Application Vol. 2, (Wiley New York 1970).Google Scholar
  32. 32.
    A. Dhar and S. N. Majumdar, Residence time distribution for a class of gaussian Markov processes, Phys. Rev. E 59, 6413–6418 (1999).CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    S. N. Majumdar, Persistence in nonequilibrium systems, cond-mat/9907407 (2004).Google Scholar
  34. 34.
    S. N. Majumdar and A. Comtet, Local and occupation time of a particle diffusing in a random medium, Phys. Rev. Lett. 89, 060601 (2002).ADSGoogle Scholar
  35. 35.
    T. J. Newman and W. Loinaz, Critical dimensions of the diffusion equation, Phys. Rev. Lett. 86, 2712–2715 (2001).ADSGoogle Scholar
  36. 36.
    G. Bel and E. Barkai, Weak ergodicity breaking in the continuous-time random walk, Phys. Rev. Lett. 94, 240602 (2005).CrossRefADSGoogle Scholar
  37. 37.
    M. Pelton, D. G. Grier and P. Guyot-Sionnest, Characterizing quantum-dot blinking using noise power spectra, Appl. Phys. Lett. 85, 819–821 (2004).CrossRefADSGoogle Scholar
  38. 38.
    G. Zumofen and J. Klafter, Power spectra and random walks in intermittent chaotic systems, Physica D 69, 436–446 (1993).CrossRefADSGoogle Scholar
  39. 39.
    J. Davidsen and H. G. Schuster, Simple model for 1/fα noise, Phys. Rev. E 65, 026120 (2002).CrossRefADSGoogle Scholar
  40. 40.
    M. B. Weissman, 1/f noise and other slow, nonexponential kinetics in condensed matter, Reviews of Modern Physics 60(2), 537–571 (1988).CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    J. Schriefl, M. Clusel, D. Carpentier and P. Degiovanni, Nonstationary dephasing of two-level systems, Europhys. Lett. 69, 156 (2005); Dephasing by a nonstationary classical intermittent noise, cond-mat/0501301 (2005).CrossRefADSGoogle Scholar
  42. 42.
    G. Margolin, V. Protasenko, M. Kuno and E. Barkai, Power law blinking quantum dots: Stochastic and physical models, cond-mat/0506512 (2005).Google Scholar
  43. 43.
    H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie, I. Rech, S. Cova, L. Xun and X. S. Xie, Protein conformational dynamics probed by single-molecule electron transfer, Science 302, 262–266 (2003).CrossRefADSGoogle Scholar
  44. 44.
    I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M. T. Valentine, A. R. Bausch and D. A. Weitz, Anomalous diffusion probes microstructure dynamics of entangled F-actin networks, Phys. Rev. Lett. 92, 178101 (2004).CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Gennady Margolin
    • 1
  • Eli Barkai
    • 1
    • 2
  1. 1.Department of Chemistry and BiochemistryNotre Dame UniversityNotre Dame
  2. 2.Department of PhysicsBar Ilan UniversityRamat GanIsrael

Personalised recommendations