Advertisement

Journal of Statistical Physics

, Volume 120, Issue 5–6, pp 1037–1100 | Cite as

Correction-to-Scaling Exponents for Two-Dimensional Self-Avoiding Walks

  • Sergio CaraccioloEmail author
  • Anthony J. Guttmann
  • Iwan Jensen
  • Andrea Pelissetto
  • Andrew N. Rogers
  • Alan D. Sokal
Article

We study the correction-to-scaling exponents for the two-dimensional self-avoiding walk, using a combination of series-extrapolation and Monte Carlo methods. We enumerate all self-avoiding walks up to 59 steps on the square lattice, and up to 40 steps on the triangular lattice, measuring the mean-square end-to-end distance, the mean-square radius of gyration and the mean-square distance of a monomer from the endpoints. The complete endpoint distribution is also calculated for self-avoiding walks up to 32 steps (square) and up to 22 steps (triangular). We also generate self-avoiding walks on the square lattice by Monte Carlo, using the pivot algorithm, obtaining the mean-square radii to ≈ 0.01% accuracy up to N=4000. We give compelling evidence that the first non-analytic correction term for two-dimensional self-avoiding walks is Δ1=3/2. We compute several moments of the endpoint distribution function, finding good agreement with the field-theoretic predictions. Finally, we study a particular invariant ratio that can be shown, by conformal-field-theory arguments, to vanish asymptotically, and we find the cancellation of the leading analytic correction.

Keywords

Self-avoiding walk polymer exact enumeration series expansion Monte Carlo pivot algorithm corrections to scaling critical exponents conformal invariance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeGennes, P.G. 1979Scaling Concepts in Polymer PhysicsCornell Univ. PressIthaca, NYGoogle Scholar
  2. des Cloizeaux, J., Jannink, G. 1990Polymers in Solution: Their Modelling and StructureOxford University PressNew YorkGoogle Scholar
  3. Schäfer, L. 1999Excluded Volume Effects in Polymer SolutionsSpringer-VerlagBerlin–New YorkGoogle Scholar
  4. Nienhuis, B. 1982Phys. Rev. Lett.491062CrossRefADSMathSciNetGoogle Scholar
  5. Nienhuis, B. 1984J. Stat. Phys.34731CrossRefzbMATHMathSciNetGoogle Scholar
  6. Saleur, H. 1987J. Phys. A: Math. Gen.20455CrossRefADSMathSciNetGoogle Scholar
  7. Adler, J. 1983J. Phys. A: Math. Gen.16L515ADSGoogle Scholar
  8. Djordjevic, Z.V., Majid, I., Stanley, H.E., dos Santos, R.J. 1983J. Phys. A: Math. Gen.16L519CrossRefADSGoogle Scholar
  9. Majid, I., Djordjevic, Z.V., Stanley, H.E. 1983Phys. Rev. Lett.51143ADSMathSciNetGoogle Scholar
  10. Privman, V. 1984Physica A123428CrossRefADSMathSciNetGoogle Scholar
  11. Guttmann, A.J. 1984J. Phys. A: Math. Gen.17455ADSMathSciNetGoogle Scholar
  12. Rapaport, D.C. 1985J. Phys. A: Math. Gen.18L201CrossRefADSGoogle Scholar
  13. Ishinabe, T. 1988Phys. Rev. B372376CrossRefADSGoogle Scholar
  14. Ishinabe, T. 1989Phys. Rev. B399486CrossRefADSGoogle Scholar
  15. MacDonald, D., Hunter, D.L., Kelly, K., Jan, N. 1992J. Phys. A: Math. Gen.251429CrossRefADSGoogle Scholar
  16. Conway A.R., Enting I.G., Guttmann A.J. (1993). J. Phys. A: Math. Gen. 26: 1519 hep-lat/9211062Google Scholar
  17. Conway, A.R., Guttmann, A.J. 1996Phys. Rev. Lett.775284CrossRefADSGoogle Scholar
  18. Shannon S.R., Choy T.C., Fleming R.J. (1996). Phys. Rev. B 53: 2175 cond-mat /9510162Google Scholar
  19. Jensen I., Guttmann A.J. (1999). J. Phys. A: Math. Gen. 32: 4867 cond-mat/ 9905291Google Scholar
  20. Havlin, S., Ben-Avraham, D. 1983Phys. Rev. A272759ADSGoogle Scholar
  21. Lyklema, J.W., Kremer, K. 1985Phys. Rev. B313182CrossRefADSGoogle Scholar
  22. Hunter, D.L., Jan, N., MacDonald, D. 1986J. Phys. A: Math. Gen.19L543CrossRefADSGoogle Scholar
  23. Lam, P.M. 1990Phys. Rev. B424447ADSGoogle Scholar
  24. Guim, I., Blöte, H.W.J., Burkhardt, T.W. 1997J. Phys. A: Math. Gen.30413CrossRefADSGoogle Scholar
  25. Conway A.R., Guttmann A.J. (1993). J. Phys. A: Math. Gen. 26: 1535 hep-lat/ 9211063Google Scholar
  26. Jensen, I. 2001J. Phys. A: Math. Gen.347979CrossRefADSzbMATHGoogle Scholar
  27. Caracciolo S., Causo M.S., Grassberger P., Pelissetto A. (1999). J. Phys. A: Math. Gen. 32: 2931 cond-mat/9812267Google Scholar
  28. Jensen, I., Guttmann, A.J. 2000J. Phys. A: Math. Gen.33L257ADSMathSciNetGoogle Scholar
  29. Cardy, J.L., Saleur, H. 1989J. Phys. A: Math. Gen.22L601CrossRefADSMathSciNetGoogle Scholar
  30. Caracciolo, S., Pelissetto, A., Sokal, A.D. 1990J. Phys. A: Math. Gen.23L969CrossRefADSMathSciNetGoogle Scholar
  31. Madras, N., Slade, G. 1993The Self-Avoiding WalkBirkhäuserBoston–Basel–BerlinGoogle Scholar
  32. Hara, T., Slade, G. 1992Commun. Math. Phys.147101CrossRefMathSciNetGoogle Scholar
  33. Hara, T., Slade, G. 1992Reviews Math. Phys.4235MathSciNetGoogle Scholar
  34. Hara T., G. Slade and Sokal A.D., J. Stat. Phys. 72: 479 (1993), hep-lat/9302003; 78: 1187 (E) (1995)Google Scholar
  35. A. Pelissetto and Vicari E., Phys. Reports 368: 549 (2002), cond-mat/0012164Google Scholar
  36. Lawler G.F., Schramm O., and Werner W., in Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot , Part 2, Proceedings of Symposia in Pure Mathematics #72 (American Mathematical Society, Providence RI, 2004), pp. 339–364, math.PR/0204277Google Scholar
  37. Li B., Madras N., and Sokal A.D., J. Stat. Phys. 80: 661 (1995), hep-lat/9409003Google Scholar
  38. J. L. Cardy and Guttmann A.J., J. Phys. A: Math. Gen. 26: 2485 (1993), cond-mat/9303035Google Scholar
  39. J. L. Cardy and Mussardo G., Nucl. Phys. B 410: 451 (1993), hep-th/9306028Google Scholar
  40. Guttmann, A.J., Yang, Y.S. 1990J. Phys. A: Math. Gen.23L117CrossRefADSMathSciNetGoogle Scholar
  41. Owczarek, A.L., Prellberg, T., Bennett-Wood, D., Guttmann, A.J. 1994J. Phys. A: Math. Gen.27L919CrossRefADSMathSciNetGoogle Scholar
  42. Caracciolo S., Causo M.S., Pelissetto A. J. Chem. Phys. 112, 7693 (2000), hep-lat/9910016Google Scholar
  43. Campostrini M., Pelissetto A., Rossi P., and Vicari E., Phys. Rev. E 57: 184 (1998), cond-mat/9705086Google Scholar
  44. Campostrini M., Pelissetto A., Rossi P., and Vicari E., Phys. Rev. B 54: 7301 (1996), hep-lat/9603002Google Scholar
  45. M. Caselle and Hasenbusch M., Nucl. Phys. B 579: 667 (2000), hep-th/9911216Google Scholar
  46. Caselle M., Hasenbusch M., Pelissetto A., and Vicari E., J. Phys. A: Math. Gen. 35: 4861 (2002), cond-mat/0106372Google Scholar
  47. Cheng, H., Wu, T.T. 1967Phys. Rev.164719CrossRefADSGoogle Scholar
  48. Stephenson J. J. Math. Phys. 5: 1009 (1964); 11: 420 (1970)Google Scholar
  49. Wegner, F.J. 1972Phys. Rev. B54529CrossRefADSGoogle Scholar
  50. Privman V., Hohenberg P.C., and Aharony A., in Phase Transitions and Critical Phenomena, vol. 14, C. Domb and Lebowitz J.L., eds. (Academic Press, London–San Diego, 1991)Google Scholar
  51. Nickel, B.G. 1991Macromolecules241358CrossRefGoogle Scholar
  52. Aharony, A., Fisher, M.E. 1983Phys. Rev. B274394ADSMathSciNetGoogle Scholar
  53. Gartenhaus, S., McCullough, W.S. 1987Phys. Rev. B353299CrossRefADSGoogle Scholar
  54. Gartenhaus, S., McCullough, W.S. 1988Phys. Rev. B3811688CrossRefADSGoogle Scholar
  55. J. Salas and Sokal A.D., Universal amplitude ratios in the critical two-dimensional Ising model on a torus, cond-mat/9904038v1, Section 3.1Google Scholar
  56. Orrick W.P., Nickel B., A. J. Guttmann and J. Perk H.H., J. Stat. Phys. 102: 795 (2001), cond-mat/0103074Google Scholar
  57. Sykes, M.F., Fisher, M.E 1958Phys. Rev. Lett.1321CrossRefADSGoogle Scholar
  58. Fisher, M.E. 1962Philos. Mag.71731Google Scholar
  59. Fisher M.E., in Statistical Physics, Weak Interactions, Field Theory (Lectures in Theoretical Physics, vol. 7C), Wesley Brittin E., ed. (University of Colorado Press, Boulder, 1965), pp. 1–159Google Scholar
  60. Burnett, S.S.C., Gartenhaus, S. 1993Phys. Rev. B477944ADSGoogle Scholar
  61. Guttmann, A.J., Whittington, S.G. 1978J. Phys. A: Math. Gen.11729MathSciNetGoogle Scholar
  62. Campostrini M., Pelissetto A., Rossi P., and Vicari E., Phys. Rev. E 65: 066127 (2002), cond-mat/0201180Google Scholar
  63. Guttmann, A.J., Wang, J. 1991J. Phys. A: Math. Gen.243107ADSMathSciNetGoogle Scholar
  64. D. N. Bennett-Wood, Numerical studies of self-avoiding walks , Ph.D. thesis, University of Melbourne (1998)Google Scholar
  65. Jensen I., J. Phys. A: Math. Gen. 37: 5503 (2004), cond-mat/0404728Google Scholar
  66. Jensen I., J. Phys. A: Math. Gen. 36: 5731 (2003), cond-mat/0301468Google Scholar
  67. Enting, I.G., Guttmann, A.J. 1992J. Phys. A: Math. Gen.252791CrossRefADSMathSciNetGoogle Scholar
  68. Rogers A.N., Ph.thesis D., University of Melbourne (2003)Google Scholar
  69. Jensen I., J. Stat. Mech ., P10008 (2004), cond-mat/0409039Google Scholar
  70. Guttmann A.J., in Phase Transitions and Critical Phenomena , vol. 13, C. Domb and Lebowitz J., eds. (Academic Press, London, 1989)Google Scholar
  71. Guttmann, A.J. 1987J. Phys. A: Math. Gen.201839ADSMathSciNetGoogle Scholar
  72. Guttmann, A.J. 2000Discrete Math.217167CrossRefzbMATHMathSciNetGoogle Scholar
  73. Lal, M. 1969Molec. Phys.1757MathSciNetGoogle Scholar
  74. MacDonald, B., Jan, N., Hunter, D.L., Steinitz, M.O. 1985J. Phys. A: Math. Gen.182627CrossRefADSGoogle Scholar
  75. Madras, N., Sokal, A.D. 1988J. Stat. Phys.50109CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Sergio Caracciolo
    • 1
    Email author
  • Anthony J. Guttmann
    • 2
  • Iwan Jensen
    • 2
  • Andrea Pelissetto
    • 3
  • Andrew N. Rogers
    • 2
  • Alan D. Sokal
    • 4
  1. 1.Dip. di Fisica and INFNUniversità di MilanoMilanoItaly
  2. 2.Department of Mathematics and StatisticsUniversity of MelbourneAustralia
  3. 3.Dip. di Fisica and INFN–Sezione di Roma IUniversità di Roma IRomaItaly
  4. 4.Department of PhysicsNew York UniversityNew YorkUSA

Personalised recommendations