Journal of Statistical Physics

, Volume 120, Issue 5–6, pp 1125–1163 | Cite as

Multiple Schramm–Loewner Evolutions and Statistical Mechanics Martingales

  • Michel Bauer
  • Denis Bernard
  • Kalle Kytölä


A statistical mechanics argument relating partition functions to martingales is used to get a condition under which random geometric processes can describe interfaces in 2d statistical mechanics at criticality. Requiring multiple SLEs to satisfy this condition leads to some natural processes, which we study in this note. We give examples of such multiple SLEs and discuss how a choice of conformal block is related to geometric configuration of the interfaces and what is the physical meaning of mixed conformal blocks. We illustrate the general ideas on concrete computations, with applications to percolation and the Ising model


Random geometric processes interfaces at criticality percolation Ising model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schramm, O. 2000Israel J. Math118221288zbMATHMathSciNetGoogle Scholar
  2. 2.
    G. Lawler, O. Schramm, and W. Werner, (I): Acta Math. 187:237–273 (2001) [arXiv: math.PR/9911084]; G. Lawler, O. Schramm, and W. Werner, (II): Acta Math. 187:275–308 (2001) [arXiv: math.PR/0003156]; G. Lawler, O. Schramm and W. Werner, (III): Ann. Henri Poincaré 38:109–123 (2002) [arXiv:math.PR/0005294].Google Scholar
  3. 3.
    G.Lawler, O.Schramm, and W.Werner, Conformal restriction. The chordal case, JAMS [arXiv:math.PR/0209343], to appearGoogle Scholar
  4. 4.
    Bauer, M., Bernard, D. 2002SLEκ growth processes and conformal field theoriesPhys. Lett. B543135[arXiv:math-ph/0206028]ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bauer, M., Bernard, D. 2003Conformal field theories of stochastic Loewner evolutionsCommun. Math. Phys239493[arXiv:hep-th/0210015]CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    R.Friedrich and W.Werner, Conformal restriction, highest weight representations and SLE, [arXiv:math-ph/0301018].Google Scholar
  7. 7.
    Bauer, M., Bernard, D. 2004Conformal transformations and the SLE partition function martingaleAnn. Henri Poincare5289[arXiv:math-ph/0305061]MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bauer, M., Bernard, D. 2004CFTs of SLEs: The radial casePhys. Lett. B583324[arXiv:math-ph/0310032]ADSMathSciNetGoogle Scholar
  9. 9.
    M.Bauer, D.Bernard, and J.Houdayer, Dipolar SLEs, [arXiv:math-ph/0411038]Google Scholar
  10. 10.
    Cardy, J. 2003Stochastic Loewner evolution and Dysons circular ensemblesJ. Phys. A: Math. Gen36L379L386[arXiv:math-ph/0301039]ADSzbMATHMathSciNetGoogle Scholar
  11. 11.
    J. Dubedat Some remarks on commutation relations for SLE, (2004) [arXiv:math.PR/ 0411299]Google Scholar
  12. 12.
    Rohde, S., Schramm, O. 2005Basic Properties of SLEAnn. Math161879920[arXiv:math.PR/0106036]MathSciNetCrossRefGoogle Scholar
  13. 13.
    W. Werner, Random planar curves and Schramm-Loewner evolutions, in Lectures on probability theory and statistics, vol. 1840 of Lecture Notes in Math. (Springer, Berlin, 2004), pp. 107–195 [arXiv:math.PR/0303354].Google Scholar
  14. 14.
    Belavin, A., Polyakov, A., Zamolodchikov, A. 1984Infinite conformal symmetry in two-dimensional quantum field theoryNucl. Phys. B241333380CrossRefADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Di Francesco, P., Mathieu, P., Sénéchal, D. 1997Conformal Field TheorySpringer-VerlagNew York InczbMATHGoogle Scholar
  16. 16.
    Smirnov, S. 2001Critical Percolation in the PlaneC. R. Acad. Sci. Paris Sér. I Math333239244zbMATHADSGoogle Scholar
  17. 17.
    Dubedat J. SLE(κ, ρ) martingales and duality. Ann. Probab 33 (2005); [arXiv:math.PR/ 0303128], to appear.Google Scholar
  18. 18.
    Bauer, M., Bernard, D. 2003SLE martingales and the Virasoro algebraPhys. Lett. B557309[arXiv:hep-th/0301064]ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    M.Bauer and D.Bernard, SLE, CFT and zig-zag probabilities, [arXiv:math-ph/ 0401019]Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Service de Physique Théorique de SaclayCEA/DSM/SPhT, Unité de recherche associée au CNRSFrance
  2. 2.Department of MathematicsUniversity of HelsinkiFinland

Personalised recommendations