Advertisement

Journal of Statistical Physics

, Volume 118, Issue 3–4, pp 625–667 | Cite as

Quantum Energy-Transport and Drift-Diffusion Models

  • Pierre DegondEmail author
  • Florian Méhats
  • Christian Ringhofer
Article

Abstract

We show that Quantum Energy-Transport and Quantum Drift-Diffusion models can be derived through diffusion limits of a collisional Wigner equation. The collision operator relaxes to an equilibrium defined through the entropy minimization principle. Both models are shown to be entropic and exhibit fluxes which are related with the state variables through spatially non-local relations. Thanks to an h expansion of these models, h2 perturbations of the Classical Energy-Transport and Drift-Diffusion models are found. In the Drift-Diffusion case, the quantum correction is the Bohm potential and the model is still entropic. In the Energy-Transport case however, the quantum correction is a rather complex expression and the model cannot be proven entropic.

Keywords

Wigner equation entropy minimization quantum BGK operator diffusion approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, Savoirs Actuels, InterEditions, Paris, Éd. du CNRS, Meudon, 1991.Google Scholar
  2. Ancona, M. G. 1987Diffusion-Drift modeling of strong inversion layersCOMPEL61118Google Scholar
  3. Ancona, M.G., Iafrate, G. J. 1989Quantum correction of the equation of state of an electron gas in a semiconductorPhys. Rev. B.3995369540Google Scholar
  4. Argyres, P. N. 1992Quantum kinetic equations for electrons in high electric, phonon fieldsPhys Lett. A.171373Google Scholar
  5. Arnold, A. 2001Mathematical concepts of open quantum boundary conditionsTransp. Theory Stat. Phys.30561584Google Scholar
  6. A. Arnold, J. Lopez, P. Markowich and J. Soler, An analysis of quantum Fokker– Planck models: A Wigner function approach, preprint (2002)Google Scholar
  7. J. Barker, D. Ferry, Self-scattering path-variable formulation of high-field, time-dependent, quantum kinetic equations for semiconductor transport in the finite collision-duration regime, Phys. Rev. Lett. 42 (1997)Google Scholar
  8. R. Balian, From microphysics to macrophysics (Springer, 1982).Google Scholar
  9. Bardos, C., Golse, F., Perthame, B. 1987The Rosseland approximation for the radiative transfer equationsComm. Pure Appl. Math.40691Google Scholar
  10. Bardos, B., Golse, C., Perthame, F. 1989The Rosseland approximation for the radiative transfer equationsComm. Pure Appl. Math.42891Google Scholar
  11. Bardos, R., Santos, C., Sentis, R. 1984Diffusion approximation, computation of the critical size, TransA. M. S.284617Google Scholar
  12. Ben Abdallah, N., Degond, N. 2000On a multidimensional Schrödinger-Poisson Scattering Model for semiconductorsJ. Math. Phys.4142414261Google Scholar
  13. Ben Abdallah, P., Degond, N. 1996On a hierarchy of macroscopic models for semiconductorsJ. Math. Phys.3733063333Google Scholar
  14. Ben Abdallah, I., Degond, N., Gamba, P. 2002Coupling one-dimensional time-dependent classical, quantum transport modelsJ. Math. Phys.43124Google Scholar
  15. Ben Abdallah, N., Degond, P., Génieys, S. 1996An energy-transport model for semiconductors derived from the Boltzmann equationJ. Stat. Phys.84205231Google Scholar
  16. Ben Abdallah, P.A., Degond, N., Markowich, P. 1997On a one-dimensional Schrödinger-Poisson Scattering Model, ZAngew. Math. Phys.48135155Google Scholar
  17. Ben Abdallah, N., Unterreiter, A. 1998On the stationary quantum drift-diffusion modelZ. Angew. Math. Phys.49251275CrossRefzbMATHGoogle Scholar
  18. Bensoussan, A., Lions, J.L., Papanicolaou, G. 1979Boundary layers, homogenization of transport processes. PublRIMS Kyoto Univ.1553Google Scholar
  19. Buot, F.A., Jensen, K.L. 1990Lattice Weyl-Wigner formulation of exact many-body quantum-transport theory, applications to novel solid-state quantum-based devicesPhys. Rev. B429429Google Scholar
  20. Cercignani, C. 1990Mathematical Methods in Kinetic TheoryPlenum PressNew YorkGoogle Scholar
  21. P. Degond, Mathematical modelling of microelectronics semiconductor devices, in Proceedings of the Morningside Mathematical Center, Beijing, AMS/IP Studies in Advanced Mathematics (AMS Society, International Press, 2000), pp. 77–109.Google Scholar
  22. Degond, P., El Ayyadi, A. 2002A coupled Schrödinger Drift-Diffusion model for quantum semiconductor device simulationsJ. Comput. Phys.181222259Google Scholar
  23. Degond, P., S., Génieys, A., Jüngel 1997A system of parabolic equations in nonequilibrium thermodynamics including thermal, electrical effectsJournal de Mathématiques Pures et Appliquées.769911015Google Scholar
  24. Degond, P., S., Génieys, A., Jüngel 1998A steady-state system in non-equilibrium thermodynamics including thermal, electrical effects. MathMethods in the Appl Sci2113991413Google Scholar
  25. Degond, P., Ringhofer, C. 2003Quantum moment hydrodynamics, the entropy principleJ. Stat. Phys.112587628Google Scholar
  26. P., Degond, C., Ringhofer 2002A note on quantum moment hydrodynamics, the entropy principleC. R. Acad. Sci. Paris, Ser I335967972Google Scholar
  27. P., Degond, C., Ringhofer 2003Binary quantum collision operators conserving mass momentum, energyC.R. Acad. Sci. Paris, Ser I336785790Google Scholar
  28. J. L. Delcroix and A. Bers, Physique des plasmas, Vols 1, 2 (interéditions/CNRSéditions, 1994).Google Scholar
  29. Eu, B. C., Mao, K. 1994Quantum kinetic theory of irreversibble thermodynamics: low-density gasesPhys. Rev. E504380Google Scholar
  30. Ferry, D., Grubin, H. 1995Modelling of quantum transport in semiconductor devicesSolid State Phys49283448Google Scholar
  31. Fischetti, M.V. 1998Theory of electron transport in small semiconductor devices using the Pauli Master equationJ. Appl. Phys.83270291Google Scholar
  32. Frensley, W.R. 1990Boundary conditions for open quantum systems driven far from equilibriumRev. Mod. Phys.62745Google Scholar
  33. Fromlet, F., Markowich, P., Ringhofer, C. 1999A Wignerfunction Approach to Phonon ScatteringVLSI Des9339350Google Scholar
  34. S. Gallego and F. Méhats, Numerical approximation of a quantum drift-diffusion model, C.R. Acad Sci. Paris in press.Google Scholar
  35. Gardner, C. 1994The quantum hydrodynamic model for semiconductor devices, SIAMJ. Appl. Math.54409427Google Scholar
  36. Gardner, C., Ringhofer, C. 1996The smooth quantum potential for the hydrodynamic modelPhys. Rev. E53157167Google Scholar
  37. Gardner, C., Ringhofer, C. 2000The Chapman-Enskog Expansion, the Quantum Hydrodynamic Model for Semiconductor DevicesVLSI Des10415435Google Scholar
  38. Gasser, I., A., Jüngel 1997The quantum hydrodynamic model for semiconductors in thermal equilibriumZ. Angew. Math. Phys.484559Google Scholar
  39. Gasser, I., Markowich, P.A. 1997Quantum Hydrodynamics, Wigner Transforms, the Classical LimitAsympt. Analysis1497116Google Scholar
  40. Gasser, I., Markowich, P., Ringhofer, C. 1996Closure conditions for classical, quantum moment hierarchies in the small temperature limitTransp. Th. Stat. Phys.25409423Google Scholar
  41. Golse, F., Poupaud, F. 1992Limite fluide des équations de Boltzmann des semiconducteurs pour une statistique de Fermi-DiracAsymp. Anal.6135Google Scholar
  42. Grenier, E. 1998Semiclassical limit of the nonlinear Schrödinger equation in small timeProc. Amer. Math. Soc.126523530Google Scholar
  43. Grubin, H., Krekovski, J. 1989Quantum moment balance equations, resonant tunneling structuresSolid-State Electron3210711075Google Scholar
  44. B. Helffer–J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) No. 24-25, 1986.Google Scholar
  45. L. Hörmander, The analysis of linear partial differential operators, Vol. III, Ch. 18, Grundlehren der Mathematischen Wissenschaften, 274. (Springer-Verlag, Berlin, 1985).Google Scholar
  46. A. Jüngel, Quasi-hydrodynamic semiconductor equations, Progress in Nonlinear Differential Equations, (Birkhäuser, 2001).Google Scholar
  47. Kluksdahl, N.C., Kriman, A.M., Ferry, D.K., Ringhofer, C. 1989Self-consistent study of the resonant-tunneling diodePhys. Rev. B397720Google Scholar
  48. Larsen, E.W., Keller, J.B. 1974Asymptotic solution of neutron transport problems for small mean free paths.J. Math. Phys.1575Google Scholar
  49. Lent, C.S., Kirkner, D.J. 1990The quantum transmitting boundary methodJ. Appl. Phys.676353Google Scholar
  50. Levermore, C.D. 1996Moment closure hierarchies for kinetic theoriesJ. Stat. Phys.8310211065Google Scholar
  51. Levinson, I.B. 1976Translational invariance in uniform fields, the equation for the density matrix in the wigner representationSoviet Physics JETP30362Google Scholar
  52. R. Luzzi, untitled, electronic preprint archive, reference arXiv:cond-mat/9909160 v2 11 Sep 1999.Google Scholar
  53. Mains, R.K., Haddad, G.I. 1988Wigner function modeling of resonant tunneling diodes with high peak to valley ratiosJ. Appl. Phys.645041Google Scholar
  54. Markowich P.A., Ringhofer C., Schmeiser C., Semiconductor Equations, (Springer, 1990).Google Scholar
  55. Morozov, V.G., Röpke, G. 1998Zubarev’s method of a nonequilibrium statistical operator, some challenges in the theory of irreversible processesCondensed Matter Phys.1673686Google Scholar
  56. Mounaix, P., Vanbésien, O., Lippens, D. 1990Effect of cathode spacer layer on the current voltage characteristics of resonant tunneling diodesAppl. Phys. Lett.571517Google Scholar
  57. I., Muller and T. Ruggeri, Rational Extended Thermodynamics, Springer Tracts in Natural Philosophy, vol. 37, Second edition, 1998.Google Scholar
  58. Nier, F. 1993A variational formulation of Schrödinger-Poisson systems in dimension d ≤ 3 CommPDE1811251147Google Scholar
  59. Nier, F. 1998The dynamics of some quantum open systems with short-range nonlinearitiesNonlinearity1111271172Google Scholar
  60. Poupaud, F. 1991Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layersAsympt Analy4293Google Scholar
  61. Pinnau, R., Unterreiter, A. 1999The Stationary Current-Voltage Characteristics of the Quantum Drift Diffusion Model SIAM JNumer. Anal.37211245CrossRefzbMATHGoogle Scholar
  62. Pinnau, R. 2000The Linearized Transient Quantum Drift Diffusion Model – Stability of Stationary States. Z. AngewMath. Mech.80327344Google Scholar
  63. Prugovecki, E. 1978A quantum mechanical Boltzmann equation for one-particle Γ s distribution functionsPhysica A91229Google Scholar
  64. Yu. Raizer P., Gas discharge Physics (Springer, 1997).Google Scholar
  65. Robert, D. 1987Autour de l’Approximation Semi-ClassiqueBirkhäuserBostonGoogle Scholar
  66. Selberherr S., Analysis, Simulation of Semiconductor Devices (Springer, 1984).Google Scholar
  67. Stratton, R. 1962Diffusion of hot, cold electrons in semiconductor barriersPhys. Rev.12620022014Google Scholar
  68. Zubarev, D.N., Morozov, V.G., Röpke, G. 1996Statistical mechanics of Nonequilibrium Processes, Basic concepts Kinetic TheoryAkademie VerlagBerlinGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Pierre Degond
    • 1
    Email author
  • Florian Méhats
    • 1
  • Christian Ringhofer
    • 2
  1. 1.MIP, Laboratoire CNRS (UMR 5640)Université Paul SabatierToulouse Cedex 04France
  2. 2.Department of MathematicsArizona State UniversityTempeUSA

Personalised recommendations