Advertisement

Journal of Statistical Physics

, Volume 118, Issue 1–2, pp 343–364 | Cite as

The Small Scales of the Stochastic Navier–Stokes Equations Under Rough Forcing

  • Jonathan C. MattinglyEmail author
  • Toufic M. Suidan
Article

Abstract

We prove that the small scale structures of the stochastically forced Navier–Stokes equations approach those of the naturally associated Ornstein–Uhlenbeck process as the scales get smaller. Precisely, we prove that the rescaled kth spatial Fourier mode converges weakly on path space to an associated Ornstein–Uhlenbeck process as |k|→ ∞. In addition, we prove that the Navier–Stokes equations and the naturally associated Ornstein–Uhlenbeck process induce equivalent transition densities if the viscosity is replaced with hyper-viscosity. This gives a simple proof of unique ergodicity for the hyperviscous Navier–Stokes system. We show how different strengthened hyperviscosity produce varying levels of equivalence.

Keywords

Viscosity Physical Chemistry Fourier Statistical Physic Stokes Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bricmont, J., Kupiainen, A., Lefevere, R. 2001Ergodicity of the 2D Navier–Stokes equations with random forcingCommun. Math. Phys.2246581Dedicated to Joel L. Lebowitz.Google Scholar
  2. Pao-Liu, Chow, Rafail, Z. 1997Khasminskii, Stationary solutions of nonlinear stochastic evolution equations. Stochastic AnalAppl.15671699Google Scholar
  3. Weinan, E, Mattingly, J.C., Sinai., Ya. G. 2001Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equationCommun. Math. Phys.22483106Google Scholar
  4. Benedetta, Ferrario. 1997Ergodic results for stochastic Navier–Stokes equation.Stochastics and Stochastics Reports.60271288Google Scholar
  5. Franco, Flandoli. 1994Dissipativity and invariant measures for stochastic Navier–Stokes equationsNoDEA1403426Google Scholar
  6. Franco, Flandoli, Maslowski, B. 1995Ergodicity of the 2-D Navier–Stokes equation under random perturbationsCommun. in Math. Phys.171119141Google Scholar
  7. Sergei, Kuksin, Armen, Shirikyan. 2000Stochastic dissipative PDEs and Gibbs measuresCommun. Math. Phys.213291330CrossRefMathSciNetzbMATHGoogle Scholar
  8. Mattingly, Jonathan C 2002Exponential convergence for the stochastically forced Navier–Stokes equations and other partially dissipative dynamicsCommun. Math. Phys.230421462Google Scholar
  9. Jonathan C. Mattingly. (2003). On recent progress for the stochastic Navier Stokes equations, in Journées Équations aux dérivées partielles, Forges-les-Eaux, 2003. See http://www.math.sciences.univ-nantes.fr/edpa/2003/html/Google Scholar
  10. Andrew J. Majda, Andrea L. Bertozzi. (2002). Vorticity and incompressible flow, Vol. 27 of Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2002)Google Scholar
  11. Mattingly, J.C., Sinai, Ya.G. 1999An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equationsCommun. Contemp. Math.1497516Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.School of MathInstitute for Advanced StudyPrincetonUSA
  2. 2.Department of MathematicsDuke UniversityDurhamUSA
  3. 3.Courant Institute of Mathematical SciencesNew York UniversityNYCUSA

Personalised recommendations