Advertisement

Journal of Statistical Physics

, Volume 117, Issue 3–4, pp 599–615 | Cite as

Time-Reversed Dynamical Entropy and Irreversibility in Markovian Random Processes

  • Pierre Gaspard
Article

Abstract

A concept of time-reversed entropy per unit time is introduced in analogy with the entropy per unit time by Shannon, Kolmogorov, and Sinai. This time-reversed entropy per unit time characterizes the dynamical randomness of a stochastic process backward in time, while the standard entropy per unit time characterizes the dynamical randomness forward in time. The difference between the time-reversed and standard entropies per unit time is shown to give the entropy production of Markovian processes in nonequilibrium steady states.

Dynamical randomness entropy per unit time Kolmogorov Sinai entropy entropy production time reversal nonequilibrium steady state stochastic process Markov chain jump process chemical reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. Tasaki and P. Gaspard, J.Stat.Phys. 81:935 (1995).Google Scholar
  2. 2.
    P. Gaspard, Chaos, Scattering and Statistical Mechanics(Cambridge University Press, Cambridge, UK, 1998).Google Scholar
  3. 3.
    Y. Pomeau, J.de Physique(Paris) 43:859 (1982).Google Scholar
  4. 4.
    P. Gaspard and G. Nicolis, Phys.Rev.Lett. 65:1693 (1990).Google Scholar
  5. 5.
    J. R. Dorfman and P. Gaspard, Phys.Rev.E 51:28 (1995).Google Scholar
  6. 6.
    C. Shannon, Bell Sys.Tech.J. 27:379, 623 (1948).Google Scholar
  7. 7.
    A. N. Kolmogorov, Dokl.Akad.Nauk SSSR 124:754 (1959).Google Scholar
  8. 8.
    Ya. G. Sinai, Dokl.Akad.Nauk SSSR 124:768 (1959).Google Scholar
  9. 9.
    J. L. Lebowitz and H. Spohn, J.Stat.Phys. 95:333 (1999).Google Scholar
  10. 10.
    C. Maes, J.Stat.Phys. 95:367 (1999).Google Scholar
  11. 11.
    I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory (Springer-Verlag, Berlin, 1982).Google Scholar
  12. 12.
    P. Billingsley, Ergodic Theory and Information(Krieger, Huntington, 1978).Google Scholar
  13. 13.
    J. P. Eckmann and D. Ruelle, Rev.Mod.Phys. 57:617 (1985).Google Scholar
  14. 14.
    A. Wehrl, Rev.Mod.Phys. 50:221 (1978).Google Scholar
  15. 15.
    G. Nicolis and I. Prigogine, Proc.Natl.Acad.Sci. (USA) 68:2102 (1971).Google Scholar
  16. 16.
    G. Nicolis, J.Stat.Phys. 6:195 (1972).Google Scholar
  17. 17.
    G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems(Wiley, New York, 1977).Google Scholar
  18. 18.
    J. Schnakenberg, Rev.Mod.Phys. 48:571 (1976).Google Scholar
  19. 19.
    S. Weinberg, The Quantum Theory of Fields,Vol. 1 (Cambridge University Press, Cambridge, UK, 1995).Google Scholar
  20. 20.
    W. H. Louisell, Quantum Statistical Properties of Radiation(Wiley, New York, 1973).Google Scholar
  21. 21.
    W. Pauli, in Festschrift zum 60. Geburtstage A.Sommerfelds (Hirzel, Leipzig, 1928) p. 30.Google Scholar
  22. 22.
    P. Gaspard and X.-J. Wang, Phys.Rep. 235:291 (1993).Google Scholar
  23. 23.
    L. Jiu-li, C. Van den Broeck and G. Nicolis, Z.Phys.B-Condensed Matter 56:165 (1984).Google Scholar
  24. 24.
    D. T. Gillespie, J.Comput.Phys. 22:403 (1976).Google Scholar
  25. 25.
    D. T. Gillespie, J.Phys.Chem. 81:2340 (1977).Google Scholar
  26. 26.
    A. J. C. Ladd and W. G. Hoover, J.Stat.Phys. 38:973 (1985).Google Scholar
  27. 27.
    B. Moran and W. G. Hoover, J.Stat.Phys. 48:709 (1987).Google Scholar
  28. 28.
    D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids(Academic Press, London, 1990).Google Scholar
  29. 29.
    N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, Phys.Rev.Lett. 70:2209 (1993).Google Scholar
  30. 30.
    N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, Commun.Math.Phys. 154:569 (1993).Google Scholar
  31. 31.
    J. P. Eckmann, C. A. Pillet, and L. Rey-Bellet, J.Stat.Phys. 95:305 (1999).Google Scholar
  32. 32.
    C. Wagner, R. Klages, and G. Nicolis, Phys.Rev.E 60:1401 (1999).Google Scholar
  33. 33.
    R. Klages, K. Rateitschak, and G. Nicolis, Phys.Rev.Lett. 84:4268 (2000).Google Scholar
  34. 34.
    R. Landauer, IBM J.Res.Dev. 5:183 (1961).Google Scholar
  35. 35.
    C. H. Bennett, Int.J.Theor.Phys. 21:905 (1982).Google Scholar
  36. 36.
    P. Gaspard, J.Stat.Phys. 88:1215 (1997).Google Scholar
  37. 37.
    J. R. Dorfman, P. Gaspard and T. Gilbert, Phys.Rev.E 66:026110 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Pierre Gaspard
    • 1
  1. 1.Center for Nonlinear Phenomena and Complex SystemsUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations