Skip to main content
Log in

Light Scattering in Non-aqueous Solutions of Low-Molecular-Mass Compounds: Application for Supramer Analysis of Reaction Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The use of static and dynamic light scattering (SLS and DLS, respectively) for chraracterization of solutions (0.005–0.20 mol·L− 1) of a series of carbohydrate-based low-molecular-mass compounds (glycosyl donors for chemical glycosylation) in anhydrous acetonitrile is described. The DLS data obtained suggest that, in the cases studied, the solute molecules form different supramolecular assemblies (supramers) with variable hydrodynamic radii. Analysis of concentration dependences of complementary SLS data for these solutions revealed that solvent quality may change dramatically with concentration and with the nature of solute. These results suggest that a combination of SLS and DLS is a valuable analytical tool for the supramer analysis of reaction solutions, which is useful for the rational selection of optimal concentrations for performing glycosylation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For the detailed discussion of the foundations of the supramer approach and supramer analysis of solutions (vide infra) as well as the relevant references not cited here see [29, 35].

  2. Polarimetry is extremely sensitive to changes in solution structure (see [24, 29, 46] for the detailed discussion).

  3. The use of light scattering could allow an extension of the suprmer analysis to solutions of achiral solutes.

  4. For the purpose of supramer analysis, it is not critical whether the Rh values represent the “true” dimensions of light scattering particles or just give us some response function that reflects the situation in the solution in a complex way.

  5. Note that only positive values of monotonically decreasing correlation function g1(τ) = g2(τ) – 1 can be correctly recalculated to hydrodynamic radii Rh values of “particles” dispersed in solvent. For this reason, only relatively small lag times (τ < 0.01 ms), at which correlation function is monotonically decreasing and assumes only positive values (until it becomes equal to zero), were considered for calculation of Rh values. The larger lag times cannot be considered for correct calculation of Rh values since the correlation function was increasing from zero before becoming positive. Therefore, at these greater lag times the correlation function can be considered as sign-alternating function, which is indicative of refractive index homogeneity of the medium and which corresponds to a structurally uniform solution.

  6. For solutions of compound 2 the negative slope for dilute solutions is also visible athough less clearly due to more considerable intensity scatter (see Fig. 4b).

  7. Note that compound 2 has additionally a different anomeric configuration, which changes the orientation of hydrogen bond accepting methoxycarbonyl group from equatorial (in 1 and 3) to axial (in 2). For this reason, a direct comparative analysis of SLS/DLS data for solutions of compound 2 with data for solutions of compounds 1 and 3 is not possible.

References

  1. Varki, A.: Biological roles of glycans. Glycobiology 27, 3–49 (2017). https://doi.org/10.1093/glycob/cww086

    Article  CAS  PubMed  Google Scholar 

  2. Fügedi, P.: Oligosaccharide synthesis. In: Levy, D.E., Fügedi, P. (eds.) The Organic Chemistry of Sugars, pp. 199–239. CRC Press, Taylor & Francis Group, Boca Raton (2005)

    Google Scholar 

  3. Demchenko, A.V. (ed.): Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  4. Carmona, A.T., Moreno-Vargas, A.J., Robina, I.: Glycosylation methods in oligosaccharide synthesis. Part 1. Curr. Org. Synth. 5, 33–60 (2008). https://doi.org/10.2174/157017908783497545

    Article  CAS  Google Scholar 

  5. Carmona, A.T., Moreno-Vargas, A.J., Robina, I.: Glycosylation methods in oligosaccharide synthesis. Part 2. Curr. Org. Synth. 5, 81–116 (2008). https://doi.org/10.2174/157017908784221567

    Article  CAS  Google Scholar 

  6. Smoot, J.T., Demchenko, A.V.: Oligosaccharide synthesis: from conventional methods to modern expeditious strategies. Adv. Carbohydr. Chem. Biochem. 62, 161–250 (2009). https://doi.org/10.1016/s0065-2318(09)00005-5

    Article  CAS  PubMed  Google Scholar 

  7. Crich, D.: Methodology development and physical organic chemistry: a powerful combination for the advancement of glycochemistry. J. Org. Chem. 76, 9193–9209 (2011). https://doi.org/10.1021/jo2017026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yasomanee, J.P., Demchenko, A.V.: From stereocontrolled glycosylation to expeditious oligosaccharide synthesis. Trends Glycosci. Glycotechnol. 25, 13–42 (2013). https://doi.org/10.4052/tigg.25.13

    Article  CAS  Google Scholar 

  9. Mydock, L.K., Demchenko, A.V.: Mechanism of chemical O-glycosylation: from early studies to recent discoveries. Org. Biomol. Chem. 8, 497–510 (2010). https://doi.org/10.1039/b916088d

    Article  CAS  PubMed  Google Scholar 

  10. Crich, D.: Mechanism of a chemical glycosylation reaction. Acc. Chem. Res. 43, 1144–1153 (2010). https://doi.org/10.1021/ar100035r

    Article  CAS  PubMed  Google Scholar 

  11. Bohé, L., Crich, D.: A propos of glycosyl cations and the mechanism of chemical glycosylation. Compt. Rend. Chim. 14, 3–16 (2011). https://doi.org/10.1016/j.crci.2010.03.016

    Article  CAS  Google Scholar 

  12. Huang, M., Garrett, G.E., Birlirakis, N., Bohé, L., Pratt, D.A., Crich, D.: Dissecting the mechanisms of a class of chemical glycosylation using primary 13C kinetic isotope effects. Nat. Chem. 4, 663–667 (2012). https://doi.org/10.1038/nchem.1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ranade, S.C., Demchenko, A.V.: Mechanism of chemical glycosylation: focus on the mode of activation and departure of anomeric leaving groups. J. Carbohydr. Chem. 32, 1–43 (2013). https://doi.org/10.1080/07328303.2012.749264

    Article  CAS  Google Scholar 

  14. Bohé, L., Crich, D.: A propos of glycosyl cations and the mechanism of chemical glycosylation; the current state of the art. Carbohydr. Res. 403, 48–59 (2015). https://doi.org/10.1016/j.carres.2014.06.020

    Article  CAS  PubMed  Google Scholar 

  15. Adero, P.O., Amarasekara, H., Wen, P., Bohé, L., Crich, D.: The experimental evidence in support of glycosylation mechanisms at the SN1–SN2 interface. Chem. Rev. 118, 8242–8284 (2018). https://doi.org/10.1021/acs.chemrev.8b00083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van der Vorm, S., Hansen, T., van Hengst, J.M.A., Overkleeft, H.S., van der Marel, G.A., Codée, J.D.C.: Acceptor reactivity in glycosylation reactions. Chem. Soc. Rev. 48, 4688–4706 (2019). https://doi.org/10.1039/C8CS00369F

    Article  PubMed  Google Scholar 

  17. Kononov, L.O., Tsvetkov, D.E., Orlova, A.V.: Conceivably the first example of a phase transition in aqueous solutions of oligosaccharide glycosides. Evidence from variable-temperature 1H NMR and optical rotation measurements for a solution of allyl lactoside. Russ. Chem. Bull. 51, 1337–1338 (2002). https://doi.org/10.1023/a:1020981320040

    Article  CAS  Google Scholar 

  18. Orlova, A.V., Kononov, L., Kimel, B.G., Sivaev, I.B., Bregadze, V.I.: Conjugates of polyhedral boron compounds with carbohydrates. 4. Hydrolytic stability of carborane–lactose conjugates depends on the structure of a spacer between the carborane cage and sugar moiety. Appl. Organomet. Chem. 20, 416–420 (2006). https://doi.org/10.1002/aoc.1082

    Article  CAS  Google Scholar 

  19. Kononov, L.O., Malysheva, N.N., Kononova, E.G., Garkusha, O.G.: The first example of synergism in glycosylation. Possible reasons and consequences. Russ. Chem. Bull. 55, 1311–1313 (2006). https://doi.org/10.1007/s11172-006-0419-4

    Article  CAS  Google Scholar 

  20. Kononov, L.O., Malysheva, N.N., Kononova, E.G., Orlova, A.V.: Intermolecular hydrogen-bonding pattern of a glycosyl donor: the key to understanding the outcome of sialylation. Eur. J. Org. Chem. 2008, 3251–3255 (2008). https://doi.org/10.1002/ejoc.200800324

    Article  CAS  Google Scholar 

  21. Kononov, L.O., Malysheva, N.N., Orlova, A.V.: Stereoselectivity of glycosylation may change during the reaction course: highly α-stereoselective sialylation achieved by supramer approach. Eur. J. Org. Chem. 2009, 611–616 (2009). https://doi.org/10.1002/ejoc.200801017

    Article  CAS  Google Scholar 

  22. Kononov, L.O., Malysheva, N.N., Orlova, A.V., Zinin, A.I., Laptinskaya, T.V., Kononova, E.G., Kolotyrkina, N.G.: Concentration dependence of glycosylation outcome: a clue to reproducibility and understanding the reasons behind. Eur. J. Org. Chem. 2012, 1926–1934 (2012). https://doi.org/10.1002/ejoc.201101613

    Article  CAS  Google Scholar 

  23. Kononov, L.O.: Modulation of stereoselectivity of glycosylation: a supramer approach. In: Taylor, J.C. (ed.) Advances in Chemistry Research, pp. 143–178. Nova Science Publishers, Inc., Hauppauge (2013)

    Google Scholar 

  24. Orlova, A.V., Andrade, R.R., da Silva, C.O., Zinin, A.I., Kononov, L.O.: Polarimetry as a tool for the study of solutions of chiral solutes. ChemPhysChem 15, 195–207 (2014). https://doi.org/10.1002/cphc.201300894

    Article  CAS  PubMed  Google Scholar 

  25. Orlova, A.V., Zinin, A.I., Kononov, L.O.: Mutarotation in aqueous solutions of D-levoglucosan: a supramer approach. Russ. Chem. Bull. 63, 295–297 (2014). https://doi.org/10.1007/s11172-014-0429-6

    Article  CAS  Google Scholar 

  26. Abronina, P.I., Fedina, K.G., Podvalnyy, N.M., Zinin, A.I., Chizhov, A.O., Kondakov, N.N., Torgov, V.I., Kononov, L.O.: The use of O-trifluoroacetyl protection and profound influence of the nature of glycosyl acceptor in benzyl-free arabinofuranosylation. Carbohydr. Res. 396, 25–36 (2014). https://doi.org/10.1016/j.carres.2014.05.017

    Article  CAS  PubMed  Google Scholar 

  27. Kononov, L.O.: Chemical reactivity and solution structure: on the way to a paradigm shift? RSC Adv. 5, 46718–46734 (2015). https://doi.org/10.1039/c4ra17257d

    Article  CAS  Google Scholar 

  28. Ahiadorme, D.A., Podvalnyy, N.M., Orlova, A.V., Chizhov, A.O., Kononov, L.O.: Glycosylation of dibutyl phosphate anion with arabinofuranosyl bromide: unusual influence of concentration of the reagents on the ratio of anomeric glycosyl phosphates formed. Russ. Chem. Bull. 65, 2776–2778 (2016)

    Article  CAS  Google Scholar 

  29. Kononov, L.O., Fedina, K.G., Orlova, A.V., Kondakov, N.N., Abronina, P.I., Podvalnyy, N.M., Chizhov, A.O.: Bimodal concentration-dependent reactivity pattern of a glycosyl donor: is the solution structure involved? Carbohydr. Res. 437, 28–35 (2017). https://doi.org/10.1016/j.carres.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  30. Orlova, A.V., Tsvetkov, D.E., Kononov, L.O.: Separation of levoglucosan supramers by high performance liquid chromatography. Russ. Chem. Bull. 66, 1712–1715 (2017). https://doi.org/10.1007/s11172-017-1945-y

    Article  CAS  Google Scholar 

  31. Orlova, A.V., Laptinskaya, T.V., Bovin, N.V., Kononov, L.O.: Differences in reactivity of N-acetyl- and N,N-diacetylsialyl chlorides, caused by their different supramolecular organization in solutions. Russ. Chem. Bull. 66, 2173–2179 (2017). https://doi.org/10.1007/s11172-017-1999-x

    Article  CAS  Google Scholar 

  32. Podvalnyy, N.M., Malysheva, N.N., Panova, M.V., Zinin, A.I., Chizhov, A.O., Orlova, A.V., Kononov, L.O.: Stereoselective sialylation with O-trifluoroacetylated thiosialosides: hydrogen bonding involved? Carbohydr. Res. 451, 12–28 (2017). https://doi.org/10.1016/j.carres.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  33. Stepanova, E.V., Podvalnyy, N.M., Abronina, P.I., Kononov, L.O.: Length matters: one additional methylene group in a reactant is able to affect the reactivity pattern and significantly increase the product yield. Synlett 29, 2043–2045 (2018). https://doi.org/10.1055/s-0037-1610648

    Article  CAS  Google Scholar 

  34. Abronina, P.I., Malysheva, N.N., Litvinenko, V.V., Zinin, A.I., Kolotyrkina, N.G., Kononov, L.O.: A ring contraction of 2,3-di-O-silylated thiopyranosides to give thiofuranosides under mildly acidic conditions. Org. Lett. 20, 6051–6054 (2018). https://doi.org/10.1021/acs.orglett.8b02424

    Article  CAS  PubMed  Google Scholar 

  35. Nagornaya, M.O., Orlova, A.V., Stepanova, E.V., Zinin, A.I., Laptinskaya, T.V., Kononov, L.O.: The use of the novel glycosyl acceptor and supramer analysis in the synthesis of sialyl-α(2-3)-galactose building block. Carbohydr. Res. 470, 27–35 (2018). https://doi.org/10.1016/j.carres.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  36. Orlova, A.V., Laptinskaya, T.V., Kononov, L.O.: The first example of detection of mesoscale particles in a solution of a low-molecular-mass compound in dichloromethane. Russ. Chem. Bull. 68, 1462–1464 (2019). https://doi.org/10.1007/s11172-019-2580-6

    Article  CAS  Google Scholar 

  37. Myachin, I.V., Orlova, A.V., Kononov, L.O.: Glycosylation in flow: effect of the flow rate and type of the mixer. Russ. Chem. Bull. 68, 2126–2129 (2019). https://doi.org/10.1007/s11172-019-2677-y

    Article  CAS  Google Scholar 

  38. Pazynina, G., Tyrtysh, T., Nasonov, V., Belyanchikov, I., Paramonov, A., Malysheva, N., Zinin, A., Kononov, L., Bovin, N.: Divergent strategy for the synthesis of α2-3-linked sialo-oligosaccharide libraries using a Neu5TFA-(α2-3)-Gal building block. Synlett 24, 226–230 (2013). https://doi.org/10.1055/s-0032-1317961

    Article  CAS  Google Scholar 

  39. Krickl, S., Buchecker, T., Meyer, A.U., Grillo, I., Touraud, D., Bauduin, P., Konig, B., Pfitzner, A., Kunz, W.: A systematic study of the influence of mesoscale structuring on the kinetics of a chemical reaction. Phys. Chem. Chem. Phys. 19, 23773–23780 (2017). https://doi.org/10.1039/c7cp02134h

    Article  CAS  PubMed  Google Scholar 

  40. Chao, C.-S., Li, C.-W., Chen, M.-C., Chang, S.-S., Mong, K.-K.T.: Low-concentration 1,2-trans β-selective glycosylation strategy and its applications in oligosaccharide synthesis. Chem. Eur. J. 15, 10972–10982 (2009). https://doi.org/10.1002/chem.200901119

    Article  CAS  PubMed  Google Scholar 

  41. Chao, C.S., Lin, C.Y., Mulani, S., Hung, W.C., Mong, K.K.T.: Neighboring-group participation by C-2 ether functions in glycosylations directed by nitrile solvents. Chem. Eur. J. 17, 12193–12202 (2011). https://doi.org/10.1002/chem.201100732

    Article  CAS  PubMed  Google Scholar 

  42. Mong, K.K.T., Yen, Y.F., Hung, W.C., Lai, Y.H., Chen, J.H.: Application of 2-azido-2-deoxythioglycosides for β-glycoside formation and oligosaccharide synthesis. Eur. J. Org. Chem. 2012, 3009–3017 (2012). https://doi.org/10.1002/ejoc.201200173

    Article  CAS  Google Scholar 

  43. Yang, F., Zhu, Y., Yu, B.: A dramatic concentration effect on the stereoselectivity of N-glycosylation for the synthesis of 2′-deoxy-β-ribonucleosides. Chem. Commun. 48, 7097–7097 (2012). https://doi.org/10.1039/c2cc33155a

    Article  CAS  Google Scholar 

  44. Yasomanee, J.P., Demchenko, A.V.: Effect of remote picolinyl and picoloyl substituents on the stereoselectivity of chemical glycosylation. J. Am. Chem. Soc. 134, 20097–20102 (2012). https://doi.org/10.1021/ja307355n

    Article  CAS  PubMed  Google Scholar 

  45. Visansirikul, S., Yasomanee, J.P., Demchenko, A.V.: Halobenzoyl groups in glycosylation: effect on stereoselectivity and reactivity of glycosyl donors. Russ. Chem. Bull. 64, 1107–1118 (2015). https://doi.org/10.1007/s11172-015-0987-2

    Article  CAS  Google Scholar 

  46. Franca, B.A., da Silva, C.O.: Specific rotation of monosaccharides: a global property bringing local information. Phys. Chem. Chem. Phys. 16, 13096–13102 (2014). https://doi.org/10.1039/c4cp01316f

    Article  CAS  PubMed  Google Scholar 

  47. Lagodzinskaya, G.V., Laptinskaya, T.V., Kazakov, A.I.: Supramolecular structuring of aqueous solutions of strong acids: manifestations in light scattering, NMR, and oxidation kinetics. Does liquid have a drop-like nature? 1. Nitric acid. Russ. Chem. Bull. 67, 1838–1850 (2018). https://doi.org/10.1007/s11172-018-2297-y

    Article  CAS  Google Scholar 

  48. Lagodzinskaya, G.V., Laptinskaya, T.V., Kazakov, A.I.: Supramolecular structuring of aqueous solutions of strong acids: manifestations in light scattering, NMR, and oxidation kinetics. Does liquid have a drop-like nature? 2. Perchloric acid. Russ. Chem. Bull. 67, 2212–2223 (2018). https://doi.org/10.1007/s11172-018-2358-2

    Article  CAS  Google Scholar 

  49. Pecora, R.: Dynamic light scattering measurement of nanometer particles in liquids. J. Nanopart. Res. 2, 123–131 (2000). https://doi.org/10.1023/a:1010067107182

    Article  CAS  Google Scholar 

  50. Schärtl, W.: Light Scattering from Polymer Solutions and Nanoparticle Dispersions, 1st edn. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  51. Chu, B.: Laser Light Scattering: Basic Principles and Practice. Academic Press, Boston (1991)

    Google Scholar 

  52. Berne, B.J., Pecora, R.: Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics. Dover, New York (2000)

    Google Scholar 

  53. Provencher, S.W.: A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 27, 213–227 (1982). https://doi.org/10.1016/0010-4655(82)90173-4

    Article  Google Scholar 

  54. Provencher, S.W.: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 27, 229–242 (1982). https://doi.org/10.1016/0010-4655(82)90174-6

    Article  Google Scholar 

  55. Teraoka, I.: Polymer Solutions: An Introduction to Physical Properties. Wiley, New York (2002)

    Book  Google Scholar 

  56. Introduction to the calculators in the Zetasizer software (TN120925). Malvern Instruments Limited, Malvern (2014)

  57. Alford, J.R., Kendrick, B.S., Carpenter, J.F., Randolph, T.W.: Measurement of the second osmotic virial coefficient for protein solutions exhibiting monomer–dimer equilibrium. Anal. Biochem. 377, 128–133 (2008). https://doi.org/10.1016/j.ab.2008.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fried, J.R.: Polymer Science and Technology, 2nd edn. Prentice Hall, Upper Saddle River, NJ (2003)

    Google Scholar 

  59. Wolf, B.A.: Making Flory–Huggins practical: thermodynamics of polymer-containing mixtures. In: Wolf, B.A., Enders, S. (eds.) Polymer Thermodynamics: Liquid Polymer-Containing Mixtures. Adv. Polymer Sci. vol. 238. pp. 1–66. Springer, Berlin, Heidelberg (2011)

  60. Sharipov, A.S., Loukhovitski, B.I., Tsai, C.J., Starik, A.M.: Theoretical evaluation of diffusion coefficients of (Al2O3)n clusters in different bath gases. Eur. Phys. J. D 68, 99 (2014). https://doi.org/10.1140/epjd/e2014-40831-2

    Article  CAS  Google Scholar 

  61. Edward, J.T.: Molecular volumes and the Stokes–Einstein equation. J. Chem. Educ. 47, 261–270 (1970). https://doi.org/10.1021/ed047p261

    Article  CAS  Google Scholar 

  62. Zhao, Y.H., Abraham, M.H., Zissimos, A.M.: Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. J. Org. Chem. 68, 7368–7373 (2003). https://doi.org/10.1021/jo034808o

    Article  CAS  PubMed  Google Scholar 

  63. Krickl, S., Jurko, L., Wolos, K., Touraud, D., Kunz, W.: Surfactant-free microemulsions with cleavable constituents. J. Mol. Liq. 271, 112–117 (2018). https://doi.org/10.1016/j.molliq.2018.08.120

    Article  CAS  Google Scholar 

  64. Sedlák, M.: Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: 1. Light scattering characterization. J. Phys. Chem. B 110, 4329–4338 (2006). https://doi.org/10.1021/jp0569335

    Article  CAS  PubMed  Google Scholar 

  65. Buchecker, T., Krickl, S., Winkler, R., Grillo, I., Bauduin, P., Touraud, D., Pfitzner, A., Kunz, W.: The impact of the structuring of hydrotropes in water on the mesoscale solubilisation of a third hydrophobic component. Phys. Chem. Chem. Phys. 19, 1806–1816 (2017). https://doi.org/10.1039/c6cp06696h

    Article  CAS  PubMed  Google Scholar 

  66. Krickl, S., Touraud, D., Bauduin, P., Zinn, T., Kunz, W.: Enzyme activity of horseradish peroxidase in surfactant-free microemulsions. J. Colloid Interface Sci. 516, 466–475 (2018). https://doi.org/10.1016/j.jcis.2018.01.077

    Article  CAS  PubMed  Google Scholar 

  67. Hahn, M., Krickl, S., Buchecker, T., Jost, G., Touraud, D., Bauduin, P., Pfitzner, A., Klamt, A., Kunz, W.: Ab initio prediction of structuring/mesoscale inhomogeneities in surfactant-free microemulsions and hydrogen-bonding-free microemulsion. Phys. Chem. Chem. Phys. 21, 8054–8066 (2019). https://doi.org/10.1039/c8cp07544a

    Article  CAS  PubMed  Google Scholar 

  68. Troncoso, J., Zemánková, K., Jover, A.: Dynamic light scattering study of aggregation in aqueous solutions of five amphiphiles. J. Mol. Liq. 241, 525–529 (2017). https://doi.org/10.1016/j.molliq.2017.06.022

    Article  CAS  Google Scholar 

  69. Sedlák, M., Rak, D.: On the origin of mesoscale structures in aqueous solutions of tertiary butyl alcohol: the mystery resolved. J. Phys. Chem. B 118, 2726–2737 (2014). https://doi.org/10.1021/jp500953m

    Article  CAS  PubMed  Google Scholar 

  70. Lagodzinskaya, G.V., Laptinskaya, T.V., Kazakov, A.I., Kurochkina, L.S., Manelis, G.B.: Slow large-scale supramolecular structuring as a cause of kinetic anomalies in the liquid-phase oxidation with nitric acid. Russ. Chem. Bull. 65, 984–992 (2016). https://doi.org/10.1007/s11172-016-1401-4

    Article  CAS  Google Scholar 

  71. Svard, M., Renuka Devi, K., Khamar, D., Mealey, D., Cheuk, D., Zeglinski, J., Rasmuson, A.C.: Solute clustering in undersaturated solutions – systematic dependence on time, temperature and concentration. Phys. Chem. Chem. Phys. 20, 15550–15559 (2018). https://doi.org/10.1039/c8cp01509k

    Article  CAS  PubMed  Google Scholar 

  72. Rak, D., Sedlák, M.: On the mesoscale solubility in liquid solutions and mixtures. J. Phys. Chem. B 123, 1365–1374 (2019). https://doi.org/10.1021/acs.jpcb.8b10638

    Article  CAS  PubMed  Google Scholar 

  73. Rak, D., Ovadová, M., Sedlák, M.: (Non)existence of bulk nanobubbles: the role of ultrasonic cavitation and organic solutes in water. J. Phys. Chem. Lett. 10, 4215–4221 (2019). https://doi.org/10.1021/acs.jpclett.9b01402

    Article  CAS  PubMed  Google Scholar 

  74. Zemb, T., Kunz, W.: Weak aggregation: state of the art, expectations and open questions. Curr. Opin. Colloid Interface Sci. 22, 113–119 (2016). https://doi.org/10.1016/j.cocis.2016.04.002

    Article  CAS  Google Scholar 

  75. Enami, S., Ishizuka, S., Colussi, A.J.: Chemical signatures of surface microheterogeneity on liquid mixtures. J. Chem. Phys. 150, 024702 (2019). https://doi.org/10.1063/1.5055684

    Article  CAS  PubMed  Google Scholar 

  76. Qiu, J., Ishizuka, S., Tonokura, K., Colussi, A.J., Enami, S.: Water dramatically accelerates the decomposition of α-hydroxyalkyl-hydroperoxides in aerosol particles. J. Phys. Chem. Lett. 10, 5748–5755 (2019). https://doi.org/10.1021/acs.jpclett.9b01953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Russian Science Foundation (Project No. 16-13-10244-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid O. Kononov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlova, A.V., Laptinskaya, T.V., Malysheva, N.N. et al. Light Scattering in Non-aqueous Solutions of Low-Molecular-Mass Compounds: Application for Supramer Analysis of Reaction Solutions. J Solution Chem 49, 629–644 (2020). https://doi.org/10.1007/s10953-020-00977-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00977-1

Keywords

Navigation