Journal of Solution Chemistry

, Volume 48, Issue 11–12, pp 1547–1563 | Cite as

A Brief Review of the Prediction of Liquid–Liquid Equilibrium of Ternary Systems Containing Ionic Liquids by the COSMO-SAC Model

  • Jingwei Yang
  • Zhengkun Hou
  • Guilin Wen
  • Peizhe Cui
  • Yinglong WangEmail author
  • Jun Gao


The selection of the extractant is an important consideration for the design of liquid–liquid extraction processes. Researchers are paying more attention to a priori predictions of liquid–liquid equilibria. The predictive and fully open-source thermodynamic model COSMO-SAC (conductor-like screening model-segment activity coefficient) uses quantum chemical calculations for calculating activity coefficients and thermodynamic properties. Through a brief review of the recent advances of COSMO-SAC in predicting liquid–liquid equilibrium of ionic liquid systems, this work assessed the accuracy of prediction for different chemical family combinations and generated directions for future improvement.


Liquid–liquid equilibria Ionic liquid COSMO-SAC Activity coefficient 



This work was supported by the National Natural Science Foundation of China (Project 21776145).

Supplementary material

10953_2019_934_MOESM1_ESM.docx (782 kb)
Supplementary material 1 (DOCX 781 kb)


  1. 1.
    Huddleston, J.G., Willauer, H.D., Swatloski, R.P., Visser, A.E., Rogers, R.D.: Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem. Commun. 16, 1765–1766 (1998)Google Scholar
  2. 2.
    Zafarani-Moattar, M.T., Hamzehzadeh, S., Hosseinzadeh, S.: Phase diagrams for liquid–liquid equilibrium of ternary poly(ethylene glycol) + di-sodium tartrate aqueous system and vapor–liquid equilibrium of constituting binary aqueous systems at T = (298.15, 308.15, and 318.15) K. Fluid Phase Equilib 268(1–2), 142–152 (2008)Google Scholar
  3. 3.
    Fingerhut, R., Chen, W.-L., Schedemann, A., Cordes, W., Rarey, J., Hsieh, C.-M., Vrabec, J., Lin, S.-T.: Comprehensive assessment of COSMO-SAC models for predictions of fluid phase equilibria. Ind. Eng. Chem. Res. 56, 9868–9884 (2017)Google Scholar
  4. 4.
    Hendriks, E., Kontogeorgis, G.M., Dohrn, R., de Hemptinne, J.-C., Economou, I.G., Žilnik, L., Vesovic, V.: Industrial requirements for thermodynamics and transport properties. Ind. Eng. Chem. Res. 49, 11131–11141 (2010)Google Scholar
  5. 5.
    Gubbins, K.E., Moore, J.D.: Molecular modeling of matter: impact and prospects in engineering. Ind. Eng. Chem. Res. 49, 3026–3046 (2010)Google Scholar
  6. 6.
    Soares, R.D.P.: The combinatorial term for COSMO-based activity coefficient models. Ind. Eng. Chem. Res. 50(5), 3060–3063 (2011)Google Scholar
  7. 7.
    Klamt, A.: The COSMO and COSMO-RS solvation models. Wiley Interdiscip. Rev. 8, 1338–1349 (2018)Google Scholar
  8. 8.
    Sadeghi, R.: A modified Wilson model for the calculation of vapour + liquid equilibrium of aqueous polymer + salt solutions. J. Chem. Thermodyn. 37, 323–329 (2005)Google Scholar
  9. 9.
    Dadmohammadi, Y., Gebreyohannes, S., Abudour, A.M., Neely, B.J., Gasem, K.A.M.: Representation and prediction of vapor–liquid equilibrium using the Peng-Robinson equation of state and UNIQUAC activity coefficient model. Ind. Eng. Chem. Res. 55, 1088–1101 (2016)Google Scholar
  10. 10.
    Gebreyohannes, S., Neely, B.J., Gasem, K.A.M.: One-parameter modified nonrandom two-liquid (NRTL) activity coefficient model. Fluid Phase Equilib. 379, 196–205 (2014)Google Scholar
  11. 11.
    Gerber, R.P., Soares, R.D.P.: Prediction of infinite-dilution activity coefficients using UNIFAC and COSMO-SAC variants. Ind. Eng. Chem. Res. 49(16), 7488–7496 (2010)Google Scholar
  12. 12.
    Lin, S.-T., Sandler, S.I.: A priori phase equilibrium prediction from a segment contribution solvation model. Ind. Eng. Chem. Res. 41, 899–913 (2002)Google Scholar
  13. 13.
    Harwood, D.B., Peters, C.J., Siepmann, J.I.: A Monte Carlo simulation study of the liquid–liquid equilibria for binary dodecane/ethanol and ternary dodecane/ethanol/water mixtures. Fluid Phase Equilib. 407, 269–279 (2016)Google Scholar
  14. 14.
    Núñez-Rojas, E., Flores-Ruiz, H.M., Alejandre, J.: Molecular dynamics simulations to separate benzene from hydrocarbons using polar and ionic liquid solvents. J. Mol. Liq. 249, 591–599 (2018)Google Scholar
  15. 15.
    Zeng, Y., Jin, J., Wang, C., Xu, Y., Wang, J., Ju, S.: Monte Carlo simulations of phase equilibria and microstructure of thiophene/[Bmim][PF6]/CO2. Chem. Eng. Sci. 149, 88–96 (2016)Google Scholar
  16. 16.
    Qin, S., Zhou, H.X.: Fast method for computing chemical potentials and liquid–liquid phase equilibria of macromolecular solutions. J. Phys. Chem. B 120, 8164–8174 (2016)PubMedPubMedCentralGoogle Scholar
  17. 17.
    Dehury, P., Mahanta, U., Banerjee, T.: Partitioning of butanol between a hydrophobic ionic liquid and aqueous phase: insights from liquid liquid equilibria measurements and molecular dynamics simulations. Fluid Phase Equilib. 425, 421–431 (2016)Google Scholar
  18. 18.
    Lasich, M., Johansson, E.L., Ramjugernath, D.: Assessing the ability of force-fields to predict liquid–liquid equilibria of ternary systems of light alcohols + water + dodecane by Monte Carlo simulation. Fluid Phase Equilib. 368, 65–71 (2014)Google Scholar
  19. 19.
    Klamt, A., Jonas, V., Burger, T., Lohrenz, J.C.W.: Refinement and parametrization of COSMO-RS. J. Chem. Phys. A 102(26), 5074–5085 (1998)Google Scholar
  20. 20.
    Klamt, A., Eckert, F.: COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilib. 172, 43–72 (2000)Google Scholar
  21. 21.
    Freire, M.G., Ventura, S.P.M., Santos, L.M., Marrucho, I.M., Coutinho, J.A.: Evaluation of COSMO-RS for the prediction of LLE and VLE of water and ionic liquids binary systems. Fluid Phase Equilib. 268(12), 74–84 (2008)Google Scholar
  22. 22.
    Freire, M.G., Santos, L.M., Marrucho, I.M., Coutinho, J.A.: Evaluation of COSMO-RS for the prediction of LLE and VLE of alcohols + ionic liquids. Fluid Phase Equilib. 255(2), 167–178 (2007)Google Scholar
  23. 23.
    Banerjee, T., Sahoo, R.K., Rath, S.S., Kumar, R., Khanna, A.: multicomponent liquid–liquid equilibria prediction for aromatic extraction systems using COSMO-RS. Ind. Eng. Chem. Res. 46, 1292–1304 (2007)Google Scholar
  24. 24.
    Banerjee, T., Verma, K.K., Khanna, A.: Liquid–liquid equilibrium for ionic liquid systems using COSMO-RS: effect of cation and anion dissociation. AIChE J. 54, 1874–1885 (2008)Google Scholar
  25. 25.
    Ferreira, A.R., Freire, M.G., Ribeiro, J.C., Lopes, F.M., Crespo, J.G., Coutinho, J.A.: An overview of the liquid–liquid equilibria of (ionic liquid + hydrocarbon) binary systems and their modeling by the conductor-like screening model for real solvents. Ind. Eng. Chem. Res. 50(9), 5279–5294 (2011)Google Scholar
  26. 26.
    Ferreira, A.R., Freire, M.G., Ribeiro, J.C., Lopes, F.M., Crespo, J.G., Coutinho, J.A.P.: Overview of the liquid–liquid equilibria of ternary systems composed of ionic liquid and aromatic and aliphatic hydrocarbons, and their modeling by COSMO-RS. Ind. Eng. Chem. Res. 51, 3483–3507 (2012)Google Scholar
  27. 27.
    Paduszynski, K.: Extensive evaluation of the conductor-like screening model for real solvents method in predicting liquid–liquid equilibria in ternary systems of ionic liquids with molecular compounds. J. Chem. Phys. B 122, 4016–4028 (2018)Google Scholar
  28. 28.
    Kundu, D., Banerjee, T.: Multicomponent vapor–liquid–liquid equilibrium prediction using an a priori segment based model. Ind. Eng. Chem. Res. 50, 14090–14096 (2011)Google Scholar
  29. 29.
    Xiong, R., Sandler, S.I., Burnett, R.I.: An improvement to COSMO-SAC for predicting thermodynamic properties. Ind. Eng. Chem. Res. 53, 8265–8278 (2014)Google Scholar
  30. 30.
    Hsieh, C.-M., Sandler, S.I., Lin, S.-T.: Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions. Fluid Phase Equilib. 297, 90–97 (2010)Google Scholar
  31. 31.
    Xiong, R., Miller, J., León, M., Nikolakis, V., Sandler, S.I.: Evaluation of COSMO-SAC method for the prediction of the alcohol–water partition coefficients of the compounds encountered in aqueous phase fructose dehydration. Chem. Eng. Sci. 126, 169–176 (2015)Google Scholar
  32. 32.
    Zhou, S., Xiong, K., Li, L., Chen, Y.: Liquid–liquid equilibrium for methyl butyl ketone + o-, m-, p-cresol + water ternary systems and COSMO-SAC predictions. J. Chem. Thermodyn. 127, 17–24 (2018)Google Scholar
  33. 33.
    Zhou, S., Li, L., Wang, Y., Chen, Y.: Measurement, correlation and COSMO-SAC prediction of liquid–liquid equilibrium for the ternary systems, mesityl oxide + o-, m-, p-cresol + water, at 333.2 K and 353.2 K. Fluid Phase Equilib. 440, 45–53 (2017)Google Scholar
  34. 34.
    Chen, Y., Zhou, S., Wang, Y., Li, L.: Screening solvents to extract phenol from aqueous solutions by the COSMO-SAC model and extraction process simulation. Fluid Phase Equilib. 451, 12–24 (2017)Google Scholar
  35. 35.
    Shah, M.R., Yadav, G.D.: Prediction of liquid–liquid equilibria for biofuel applications by quantum chemical calculations using the COSMO-SAC method. Ind. Eng. Chem. Res. 50, 13066–13075 (2011)Google Scholar
  36. 36.
    Shah, M.R., Anantharaj, R., Banerjee, T., Yadav, G.D.: Quaternary (liquid + liquid) equilibria for systems of imidazolium based ionic liquid + thiophene + pyridine + cyclohexane at 298.15 K: experiments and quantum chemical predictions. J. Chem. Thermodyn. 62, 142–150 (2013)Google Scholar
  37. 37.
    Bharti, A., Banerjee, T.: Enhancement of bio-oil derived chemicals in aqueous phase using ionic liquids: experimental and COSMO-SAC predictions using a modified hydrogen bonding expression. Fluid Phase Equilib. 400, 27–37 (2015)Google Scholar
  38. 38.
    Ferro, V.R., De Riva, J., Sanchez, D., Ruiz, E., Palomar, J.: Conceptual design of unit operations to separate aromatic hydrocarbons from naphtha using ionic liquids. COSMO-based process simulations with multi-component “real” mixture feed. Chem. Eng. Res. Des. 94, 632–647 (2015)Google Scholar
  39. 39.
    Zhou, Y., Xu, D., Zhang, L., Ma, Y., Ma, X., Gao, J., Wang, Y.: Separation of thioglycolic acid from its aqueous solution by ionic liquids: ionic liquids selection by the COSMO-SAC model and liquid–liquid phase equilibrium. J. Chem. Thermodyn. 118, 263–273 (2018)Google Scholar
  40. 40.
    Verma, R., Banerjee, T.: Liquid–liquid extraction of lower alcohols using menthol-based hydrophobic deep eutectic solvent: experiments and COSMO-SAC predictions. Ind. Eng. Chem. Res. 57, 3371–3381 (2018)Google Scholar
  41. 41.
    Bharti, A., Verma, R., Sarvesh, N., Malviya, A., Banerjee, T., Sandler, S.I.: Liquid–liquid equilibria and COSMO-SAC modeling of organic solvent/ionic liquid–hydroxyacetone–water mixtures. Fluid Phase Equilib. 462, 73–84 (2018)Google Scholar
  42. 42.
    Hsieh, C.-M., Lin, S.-T.: Prediction of liquid–liquid equilibrium from the Peng–Robinson + COSMOSAC equation of state. Chem. Eng. Sci. 65, 1955–1963 (2010)Google Scholar
  43. 43.
    Lee, B.S., Lin, S.T.: The role of long-range interactions in the phase behavior of ionic liquids. Phys. Chem. Chem. Phys. 14, 6520–6525 (2012)PubMedGoogle Scholar
  44. 44.
    Lee, B.-S., Lin, S.-T.: Prediction of phase behaviors of ionic liquids over a wide range of conditions. Fluid Phase Equilib. 356, 309–320 (2013)Google Scholar
  45. 45.
    Andreu, J.S., Vega, L.F.: Capturing the solubility behavior of CO2 in ionic liquids by a simple model. J. Phys. Chem. C 111(43), 16028–16034 (2007)Google Scholar
  46. 46.
    Leekumjorn, S., Krejbjerg, K.: Phase behavior of reservoir fluids: comparisons of PC-SAFT and cubic EOS simulations. Fluid Phase Equilib. 359, 17–23 (2013)Google Scholar
  47. 47.
    Peng, D., Zhang, J., Cheng, H., Chen, L., Qi, Z.: Computer-aided ionic liquid design for separation processes based on group contribution method and COSMO-SAC model. Chem. Eng. Sci. 159, 58–68 (2017)Google Scholar
  48. 48.
    Loschen, C., Klamt, A.: Prediction of solubilities and partition coefficients in polymers using COSMO-RS. Ind. Eng. Chem. Res. 53(28), 11478–11487 (2014)Google Scholar
  49. 49.
    de Meindersma, G.W., Haan, A.B.: Conceptual process design for aromatic/aliphatic separation with ionic liquids. Chem. Eng. Res. Des. 86, 745–752 (2008)Google Scholar
  50. 50.
    Shah, M.R., Yadav, G.D.: Prediction of liquid–liquid equilibria of (aromatic + aliphatic + ionic liquid) systems using the Cosmo-SAC model. J. Chem. Thermodyn. 49, 62–69 (2012)Google Scholar
  51. 51.
    Del Olmo, L., López, R., García de la Vega, J.M.: Effect of the molecular structure in the prediction of thermodynamic properties for 1-butyl-3-methylimidazolium chloride ionic liquid. Int. J. Quantum Chem. 113(6), 852–858 (2013)Google Scholar
  52. 52.
    Dong, K., Zhang, S., Wang, Q.: A new class of ion–ion interaction: z-bond. Sci. China Chem. 58(3), 495–500 (2015)Google Scholar
  53. 53.
    Lynden-Bell, R.M.: Screening of pairs of ions dissolved in ionic liquids. Phys. Chem. Chem. Phys. 12(8), 1733–1740 (2010)PubMedGoogle Scholar
  54. 54.
    Buggert, M., Cadena, C., Mokrushina, L., Smirnova, I., Maginn, E.J., Arlt, W.: COSMO-RS calculations of partition coefficients: different tools for conformation search. Chem. Eng. Technol. 32, 977–986 (2009)Google Scholar
  55. 55.
    Pung, A., Leito, I.: Predicting relative stability of conformers in solution with COSMO-RS. J. Phys. Chem. A 121, 6823–6829 (2017)PubMedGoogle Scholar
  56. 56.
    Grensemann, H., Gmehling, J.: Performance of a conductor-like screening model for real solvents model in comparison to classical group contribution methods. Ind. Eng. Chem. Res. 44, 1610–1624 (2005)Google Scholar
  57. 57.
    Wang, S., Sandler, S.I.: Refinement of COSMO-SAC and the applications. Ind. Eng. Chem. Res. 46, 7275–7288 (2007)Google Scholar
  58. 58.
    Hsieh, C.-M., Lin, S.-T., Vrabec, J.: Considering the dispersive interactions in the COSMO-SAC model for more accurate predictions of fluid phase behavior. Fluid Phase Equilib. 367, 109–116 (2014)Google Scholar
  59. 59.
    Wang, S., Lin, S.-T., Watanasiri, S., Chen, C.-C.: Use of GAMESS/COSMO program in support of COSMO-SAC model applications in phase equilibrium prediction calculations. Fluid Phase Equilib. 276, 37–45 (2009)Google Scholar
  60. 60.
    Zhang, J., Qin, L., Peng, D., Zhou, T., Cheng, H., Chen, L., Qi, Z.: COSMO-descriptor based computer-aided ionic liquid design for separation processes. Chem. Eng. Sci. 162, 364–374 (2017)Google Scholar
  61. 61.
    O’Connell, J.P., Haile, J.M.: Thermodynamics fundamentals for applications. Cambridge University Press, Cambridge (2005)Google Scholar
  62. 62.
    Chen, W.L., Hsieh, C.M., Yang, L., Hsu, C.C., Lin, S.T.: A critical evaluation on the performance of COSMO-SAC models for vapor–liquid and liquid–liquid equilibrium predictions based on different quantum chemical calculations. Ind. Eng. Chem. Res. 55(34), 9312–9322 (2016)Google Scholar
  63. 63.
    Mullins, E., Oldland, R., Liu, Y.A., Wang, S., Sandler, S.I., Chen, C.-C., Zwolak, M., Seavey, K.C.: Sigma-profile database for using COSMO-based thermodynamic methods. Ind. Eng. Chem. Res. 45, 4389–4415 (2006)Google Scholar
  64. 64.
    Domańska, U., Lukoshko, E.V.: Separation of pyridine from heptane with tricyanomethanide-based ionic liquids. Fluid Phase Equilib. 395, 9–14 (2015)Google Scholar
  65. 65.
    Cai, F., Ibrahim, J.J., Gao, L., Wei, R., Xiao, G.: A study on the liquid–liquid equilibrium of 1-alkyl-3-methylimidazolium dialkylphosphate with methanol and dimethyl carbonate. Fluid Phase Equilib. 382, 254–259 (2014)Google Scholar
  66. 66.
    Królikowska, M., Karpińska, M.: Extraction of aromatic nitrogen compounds from heptane using quinolinium and isoquinolinium based ionic liquids. Fluid Phase Equilib. 400, 1–7 (2015)Google Scholar
  67. 67.
    Cai, F., Xiao, G.: Liquid–liquid equilibria for ternary systems ethanol + heptane + phosphoric-based ionic liquids. Fluid Phase Equilib. 386, 155–161 (2015)Google Scholar
  68. 68.
    Domínguez, I., Requejo, P.F., Canosa, J., Domínguez, Á.: (Liquid + liquid) equilibrium at T = 298.15 K for ternary mixtures of alkane + aromatic compounds + imidazolium-based ionic liquids. J. Chem. Thermodyn. 74, 138–143 (2014)Google Scholar
  69. 69.
    Aranda, N.M., González, B.: Cation effect of ammonium imide based ionic liquids in alcohols extraction from alcohol–alkane azeotropic mixtures. J. Chem. Thermodyn. 68, 32–39 (2014)Google Scholar
  70. 70.
    Chafer, A., de la Torre, J., Monton, J.B., Lladosa, E.: Experimental determination and correlation of liquid liquid equilibria data for a system of water plus ethanol + 1-butyl-3-methylimidazolium hexafluorophosphate at different temperatures. J. Chem. Eng. Data 62(2), 773–779 (2017)Google Scholar
  71. 71.
    Wang, S., Liu, J., Hembre, R., Barnicki, S., Goodrich, P., Hughes, T.-L., Rooney, D.W., Sink, C., Jacquemin, J., Hardacre, C.: Liquid–liquid equilibria of ionic liquids–water–acetic acid mixtures. J. Chem. Eng. Data 62, 653–664 (2017)Google Scholar
  72. 72.
    Chafer, A., De la Torre, J., Lladosa, E., Pla-Franco, J., Cumplido, M.P.: Liquid–liquid equilibria of the water + 1-propanol + 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ternary system: study of the ability of ionic liquid as a solvent. J. Chem. Eng. Data 61, 4006–4012 (2016)Google Scholar
  73. 73.
    Ebrahimi, M., Ahmadi, A.N., Safekordi, A.A., Fateminasab, F., Mehdizadeh, A.: Liquid–liquid equilibrium data for heptane + aromatic + 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([hemim][NTf2]) ternary systems. J. Chem. Eng. Data 59, 197–204 (2014)Google Scholar
  74. 74.
    Cai, F., Ibrahim, J.J., Niu, L., Xu, W., Xiao, G.: Liquid–liquid equilibrium for ternary system methanol + methyl acetate + 1,3-dimethylimidazolium dimethylphosphate at several temperatures and atmospheric pressure. J. Chem. Eng. Data 60, 57–64 (2014)Google Scholar
  75. 75.
    Cai, J., Zhen, S., Gao, D., Cui, X.: Phase equilibrium (VLE, LLE, and VLLE) data of the ternary system: ionic liquid [OMIM][PF6] + butan-1-ol + butyl acetate. J. Chem. Eng. Data 59, 2171–2176 (2014)Google Scholar
  76. 76.
    Cháfer, A., De la Torre, J., Font, A., Lladosa, E.: Liquid–liquid equilibria of water + ethanol + 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide ternary system: measurements and correlation at different temperatures. J. Chem. Eng. Data 60(8), 2426–2433 (2015)Google Scholar
  77. 77.
    Requejo, P.F., Calvar, N., Gómez, E., Domínguez, Á.: Study of the suitability of two ammonium-based ionic liquids for the extraction of benzene from its mixtures with aliphatic hydrocarbons. Fluid Phase Equilib. 426, 17–24 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical EngineeringQingdao University of Science and TechnologyQingdaoChina
  2. 2.Shandong Collaborative Innovation Center of Eco-Chemical EngineeringQingdaoChina
  3. 3.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations