Advertisement

Journal of Solution Chemistry

, Volume 48, Issue 10, pp 1393–1412 | Cite as

Studies of Mixed Micellization Behavior of Promethazine Hydrochloride and Triton X-100 in the Presence of Additives Using Multiple Techniques

  • Arifa ShaheenEmail author
  • Rabia Arif
Article
  • 26 Downloads

Abstract

In the present study, we have examined the mixed micellization behavior of promethazine hydrochloride (PMT) and the nonionic surfactant Triton X-100 mixtures at different mole fractions of TX-100 (α1) in aqueous solutions with and without additives (CTAB, glycine, vitamin-C and PVP) using conductometric, tensiometric and fluorescence techniques. PMT belongs to a class of amphiphilic drugs called phenothiazines and is used as an antihistamine, analgesic and sedative. Various parameters which include the ideal critical micelle concentration (cmcid), ideal micellar mole fraction, \(X_{1}^{\text{id}}\), of TX-100, micellar composition, \(X_{1}^{\text{mic}}\), of TX-100, interaction parameter (β), activity coefficients (\(f_{1}^{\text{mic}}\) and \(f_{2}^{\text{mic}}\)), thermodynamic parameters \(\left( {\Delta G_{\text{mic}}^{ 0} , \;\Delta G_{\text{ad}}^{0} \;{\text{and}}\;\Delta G_{\text{mic}}^{\text{E}} } \right)\) and interfacial parameters (Γmax, Amin, and Πcmc) have been calculated by using Clint’s and Rubingh’s models. In our study, we have found that the cmc < cmcid, β < 0 and \(f_{1}^{\text{mic}}\) and \(f_{2}^{\text{mic}}\) < 1; all the mixtures show synergism \(X_{1}^{\text{id}}\) as well as non-ideality. The values of \(\Delta G_{\text{ad}}^{0} > \Delta G_{\text{mic}}^{ 0}\) for all the systems indicate that adsorption phenomenon occurs primarily as compared to the micellization process. The negative values of \(\Delta G_{\text{mic}}^{\text{E}}\) for all α1 in the absence and presence of additives indicate greater stability of the micelles of mixtures than for the micelles of pure components. The interfacial parameters give information about the packing of amphiphilic molecules.

Keywords

Promethazine hydrochloride (PMT) TritonX-100 (TX-100) Conductivity Surface tension Fluorescence 

Notes

Funding

This study was funded by University Grants Commission.

Supplementary material

10953_2019_921_MOESM1_ESM.docx (274 kb)
Fig. S1 The plots of specific conductance vs [PMT] in absence and presence of different additives at mole fraction of TX-100 (α1) (a) 3.48 × 10−4, (b) 6.06 × 10−4 and (c) 1. Fig. S2 The plots of surface tension vs log [PMT] in absence and presence of different additives at mole fraction of TX-100 (α1) (a) 3.48 × 10−4, (b) 6.06 × 10−4 and (c) 1. Fig. S3 The fluorescence plots of F/F0 vs [PMT]] in absence and presence of different additives at mole fraction of TX-100 (α1) (a) 3.48 × 10−4, (b) 6.06 × 10−4 and (c) 1 (DOCX 275 kb)

References

  1. 1.
    Hill, R.M., Ogino, K., Abe, M. (eds.): Mixed Surfactant Systems, Surfactant Science Series. Marcel Dekker, New York (1993)Google Scholar
  2. 2.
    Farooq, U., Ali, A., Patel, R., Malik, N.A.: Interaction between amphiphilic antidepressant drug nortryptyline hydrochloride and conventional cationic surfactants: a physicochemical study. J. Mol. Liq. 233, 310–318 (2017).  https://doi.org/10.1016/j.molliq.2017.03.032 CrossRefGoogle Scholar
  3. 3.
    Schreier, S., Malheiros, S.V., de Paula, E.: Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochim. Biophys. Acta 1508, 210–234 (2000)CrossRefGoogle Scholar
  4. 4.
    Maurya, N., Parray ud din, M., Maurya, J.K., Kumar, A., Patel, R.: Interaction of promethazine and adiphenine to human hemoglobin: a comparative spectroscopic and computational analysis. Spectrochim. Acta Part A 199, 32–42 (2018).  https://doi.org/10.1016/j.saa.2018.03.023 CrossRefGoogle Scholar
  5. 5.
    Attwood, D., Florence, A.T.: Surfactant Systems: Their Chemistry, Pharmacy and Biology. Chapman and Hall, New York (1983)CrossRefGoogle Scholar
  6. 6.
    He, L.L., Wang, Z.X., Wang, Y.X., Liu, X.P., Yang, Y.J., Gao, Y.P., Liu, B.: Studies on the interaction between promethazine and human serum albumin in the presence of flavonoids by spectroscopic and molecular modeling techniques. Colloids Surf. B 145, 820–829 (2016).  https://doi.org/10.1016/j.colsurfb.2016.06.001 CrossRefGoogle Scholar
  7. 7.
    Kralova, I., Sjöblom, J.: Surfactants used in food industry: a review. J. Disp. Sci. Technol. 30, 1363–1383 (2009)CrossRefGoogle Scholar
  8. 8.
    Rosen, M.J.: Surfactants and Interfacial Phenomena, 3rd edn. Wiley, New York (2004)CrossRefGoogle Scholar
  9. 9.
    Tadros, T.F.: Applied Surfactants: Principles and Applications. Wiley, New York (2005)CrossRefGoogle Scholar
  10. 10.
    Menger, F.M., Littau, C.A.: Gemini-surfactants: synthesis and properties. J. Am. Chem. Soc. 113, 1451–1452 (1991)CrossRefGoogle Scholar
  11. 11.
    Kumar, D., Rub, M.A., Akram, M., Kabir-ud-Din.: Interaction of chromium(III) complex of glycylphenylalanine with ninhydrin in aqueous and cetyltrimethylammonium bromide (CTAB) micellar media. Tenside Surfactants Deterg. 51, 157–163 (2014).  https://doi.org/10.3139/113.110296 CrossRefGoogle Scholar
  12. 12.
    Kumar, D., Rub, M.A., Akram, M., Kabir-ud-Din, : Effect of gemini (alkanediyl-α,ω-bis(dimethylcetylammonium bromide)) (16-s-16, s = 4,5, 6) surfactants on the interaction of ninhydrin with chromium-glycylphenylalanine. Spectrochimica Acta Part A 132, 288–294 (2014).  https://doi.org/10.1016/j.saa.2014.05.002 CrossRefGoogle Scholar
  13. 13.
    Lipinski, C.A.: Avoiding investment in doomed drugs. Curr. Drug Discov. 1, 17–19 (2001)Google Scholar
  14. 14.
    Lipinski, C.A.: Poor aqueous solubility—an industry-wide problem in drug discovery. Am. Pharm. Rev. 5, 82–85 (2002)Google Scholar
  15. 15.
    Akram, M., Anwar, S., Kabir-ud-Din.: Biophysical investigation of promethazine hydrochloride binding with micelles of biocompatible gemini surfactants: combination of spectroscopic and electrochemical analysis. Spectrochim. Acta Part A 215, 249–259 (2019).  https://doi.org/10.1016/j.saa.209.02.082 CrossRefGoogle Scholar
  16. 16.
    Lawrence, M.J., Rees, G.D.: Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 64, 175–193 (2012).  https://doi.org/10.1016/j.addr.2012.09.018 CrossRefGoogle Scholar
  17. 17.
    Nakano, M.: Places of emulsions in drug delivery. Adv. Drug Deliv. Rev. 45, 1–4 (2000).  https://doi.org/10.1016/S0169-409X(00)00096-X CrossRefPubMedGoogle Scholar
  18. 18.
    Leuner, C., Dressman, J.: Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50, 47–60 (2000).  https://doi.org/10.1016/S0939-6411(00)00076-X CrossRefPubMedGoogle Scholar
  19. 19.
    Hennenfent, K.L., Govindan, R.: Novel formulations of taxanes: a review. Old wine in a new bottle? Ann. Oncol. 17, 735–749 (2005).  https://doi.org/10.1093/annonc/mdj100 CrossRefPubMedGoogle Scholar
  20. 20.
    Gaucher, G., Marchessault, R.H., Leroux, J.C.: Polyester-based micelles and nanoparticles for the parental delivery of taxanes. J. Control Release 143, 2–12 (2010).  https://doi.org/10.1016/j.jconrel.2009.11.012 CrossRefPubMedGoogle Scholar
  21. 21.
    Rub, M.A., Naqvi, A.Z.: Mixed micellization between an antidepressant drug imipramine hydrochloride and surfactants (conventional/gemini) at different temperatures and compositions. J. Solution Chem. 44, 2448–2469 (2015).  https://doi.org/10.1007/s10953-015-0412-3 CrossRefGoogle Scholar
  22. 22.
    Kabir-ud-Din, Rub, M.A., Naqvi, A.Z.: Mixed micelles of amphiphilic drug promethazine hydrochloride and surfactants (conventional and gemini) at 293.15 K to 308.15 K: Composition, interaction and stability of the aggregates. J. Colloid Interface Sci. 354, 700–708 (2011).  https://doi.org/10.1016/j.jcis.2010.11.005 CrossRefPubMedGoogle Scholar
  23. 23.
    Mahajan, R.K., Mahajan, S., Bhadani, A., Singh, S.: Physicochemical studies of pyridinium gemini surfactants with promethazine hydrochloride in aqueous solution. Phys. Chem. Chem. Phys. 14, 887–898 (2012).  https://doi.org/10.1039/C1CP22448D CrossRefPubMedGoogle Scholar
  24. 24.
    Heinig, K., Vogt, C.: Determination of Triton X-100 in influenza vaccine by high-performance liquid chromatography and capillary electrophoresis. Fresenius J. Anal. Chem. 359, 202–206 (1997)CrossRefGoogle Scholar
  25. 25.
    Behera, K., Pandey, S.: Interaction between ionic liquid and zwitterionic surfactant: a comparative study of two ionic liquids with different anions. J. Colloid Interface Sci. 331, 196–205 (2009).  https://doi.org/10.1016/j.jcis.2008.11.008 CrossRefPubMedGoogle Scholar
  26. 26.
    Banerjee, P., Chatterjee, S., Pramanik, S., Bhattacharya, S.C.: Interaction of pyrene-1-carboxaldehyde with micelles and mixed micelles of polyoxyethylenenonyl phenol (lgepal): a spectroscopic study. Colloids Surf. A 302, 44–50 (2007).  https://doi.org/10.1016/j.colsurfa.2007.01.038 CrossRefGoogle Scholar
  27. 27.
    Chauhan, S., Sharma, K.: Effect of temperature and additives on the critical micelle concentration and thermodynamics of micelle formation of sodium dodecyl benzene sulfonate and dodecyltrimethylammonium bromide in aqueous solution: a conductometric study. J. Chem. Thermodyn. 71, 205–211 (2014).  https://doi.org/10.1016/j.jct.2013.12.019 CrossRefGoogle Scholar
  28. 28.
    Sarkar, B., Lam, S., Alexandridis, P.: Micellization of alkyl-propoxy-ethoxylate surfactants in water–polar organic solvent mixtures. Langmuir 26, 10532–10540 (2010)CrossRefGoogle Scholar
  29. 29.
    Yan, S., Wei, A.W., Gao, A.Z., Xiaab, A.Y., Han, J.: Gemini surfactant with pyrrolidinium head groups and a hydroxyl-substituted spacer: surface properties and assisted one-pot synthesis of dendritic Au nanocrystals. New J. Chem. 42, 11573–11582 (2018).  https://doi.org/10.1039/c8nj01357h CrossRefGoogle Scholar
  30. 30.
    Rub, M.A., Azum, N., Asiri, A.M., Kashmery, H.A., Alfaifi, S.Y.M., Alharthi, S.S.: Effect of sodium dodecylbenzenesulfonate on the association behavior of promethazine hydrochloride in aqueous/electrolyte solutions at different temperatures. J. Solution Chem. 46, 862–885 (2017).  https://doi.org/10.1007/s10953-017-0614-y CrossRefGoogle Scholar
  31. 31.
    Kumar, D., Rub, M.A.: Effect of anionic surfactant and temperature on micellization behavior of promethazine hydrochloride drug in absence and presence of urea. J. Mol. Liq. 238, 389–396 (2017).  https://doi.org/10.1016/j.molliq.2017.05.027 CrossRefGoogle Scholar
  32. 32.
    Rub, M.A., Khan, F., Kumar, D., Asiri, A.M.: Study of mixed micelles of promethazine hydrochloride (PMT) and nonionic surfactant (TX-100) mixture at different temperatures and compositions. Tenside Surfactants Deterg. 52, 236–244 (2015).  https://doi.org/10.3139/113.110371 CrossRefGoogle Scholar
  33. 33.
    Mahajan, R.K., Mahajan, S., Bhadani, A., Singh, S.: Physicochemical studies of pyridinium gemini surfactants with Promethazine hydrochloride in aqueous solution. Phys. Chem. Chem. Phys. 14, 887–898 (2012).  https://doi.org/10.1039/c1cp22448d CrossRefPubMedGoogle Scholar
  34. 34.
    Mukherjee, S., Mitra, D., Bhattacharya, S.C., Panda, A.K., Moulik, S.P.: Physicochemical studies on the micellization behavior of cetylpyridinium chloride and Triton X-100 binary mixtures in aqueous medium. Colloid J. 71, 677–686 (2009).  https://doi.org/10.1134/S1061933X09050147 CrossRefGoogle Scholar
  35. 35.
    Bazito, R.C., EI Seond, O.A.: Sugar-based surfactants: adsorption and micelle formation of sodium methyl 2-acylamido-2-deoxy-6-O-sulfo-D-glucopyranosides. Langmuir 18, 4362–4366 (2002).  https://doi.org/10.1021/la0117552 CrossRefGoogle Scholar
  36. 36.
    Clint, J.H.: Micellization of mixed nonionic surface active agents. J. Chem. Soc. Faraday Trans. 1, 1327–1334 (1975).  https://doi.org/10.1039/f19757101327 CrossRefGoogle Scholar
  37. 37.
    Lange, H., Beck, K.H.: Zurmizellbildung in mischlösungenhomologer und nichthomologer. Tenside. Kolloid Z.Z. Polym. 251, 424–431 (1973)CrossRefGoogle Scholar
  38. 38.
    Holland, P.M., Rubingh, D.N.: Nonideal multicomponent mixed micelle model. J. Phys. Chem. 87, 1984–1990 (1983)CrossRefGoogle Scholar
  39. 39.
    Zana, R.: Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 12, 1208–1211 (1996).  https://doi.org/10.1021/la950691q CrossRefGoogle Scholar
  40. 40.
    Rub, M.A., Azum, N., Asiri, A.M.: Interaction of cationic amphiphilic drug nortriptyline hydrochloride with TX-100 in aqueous and urea solutions and the studies of physicochemical parameters of the mixed micelles. J. Mol. Liq. 218, 595–603 (2016).  https://doi.org/10.1016/j.molliq.2016.02.049 CrossRefGoogle Scholar
  41. 41.
    Azum, N., Rub, M.A., Asiri, A.M., Khan, A.A.P., Khan, A., Khan, S.B., Rahman, M.M., Al-Youbi, A.O.: Interaction of the amphiphilic drug amitriptyline hydrochloride with gemini and conventional surfactants: a physicochemical approach. J. Solution Chem. 42, 1532–1544 (2013).  https://doi.org/10.1007/s10953-013-0047-1 CrossRefGoogle Scholar
  42. 42.
    Hall, D.G.: Electrostatic effects in dilute solutions containing charged colloid entities. J. Chem. Soc. Faraday Trans. 87, 3529–3535 (1991).  https://doi.org/10.1039/ft9918703529 CrossRefGoogle Scholar
  43. 43.
    Rub, M.A., Khan, F., Sheikh, M.S., Azum, N., Asiri, A.M.: Tensiometric, fluorescence and 1H NMR study of mixed micellization of non-steroidal anti-inflammatory drug sodium salt of ibuprofen in the presence of non-ionic surfactant in aqueous/urea solutions. J. Chem. Thermodyn. 96, 196–207 (2016).  https://doi.org/10.1016/j.jct.2016.01.001 CrossRefGoogle Scholar
  44. 44.
    Chattoraj, D.K., Birdi, K.S.: Adsorption and the Gibbs Surface Excess, pp. 179–232. Plenum Press, New York (1984)CrossRefGoogle Scholar
  45. 45.
    Matijevic, E., Pethica, B.A.: The properties of ionized monolayers. Part 1 Sodium dodecyl sulphate at the air/water interface. Trans. Faraday Soc. 54, 1382–1389 (1958).  https://doi.org/10.1039/tf9585401382 CrossRefGoogle Scholar
  46. 46.
    Alam, M.S., Mandal, A.B.: Thermodynamic studies on mixed micellization of amphiphilic drug amitriptyline hydrochloride and nonionic surfactant Triton X-100. J. Mol. Liq. 168, 75–79 (2012).  https://doi.org/10.1016/j.molliq.2012.01.014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryAligarh Muslim UniversityAligarhIndia

Personalised recommendations