Journal of Solution Chemistry

, Volume 48, Issue 10, pp 1337–1356 | Cite as

Study of Intermolecular Interactions in Binary Mixtures of 2-Methoxyaniline with Chlorinated Ethanes at Various Temperatures

  • B. Mukesh
  • T. SreekanthEmail author
  • M. Gowrisankar
  • M. Raveendra


Densities (ρ), speeds of sound (u), and viscosities (η) are reported for binary mixtures of 2-methoxyaniline with chlorinated ethane components (1,2-dichloroethane, 1,1,2-trichloroethane and 1,1,2,2-tetrachloroethane) over the entire composition range of mole fraction at T = (303.15–313.15) K and at atmospheric pressure (0.1 MPa). The excess properties: excess molar volume, excess isentropic compressibility and deviation in viscosity are calculated from the experimental density, speed of sound and viscosity. Excess properties are correlated using the Redlich–Kister polynomial equation. The excess partial molar volumes and excess partial molar isentropic compressibilities are calculated for all the binary systems throughout the composition range and at infinite dilutions. The results are analyzed in terms of electron donor–acceptor interactions leading to the formation of intermolecular complexes and hydrogen bonding between 2-methoxyaniline and chlorinated ethane molecules. The VE results are analyzed in light of the Prigogine–Flory–Patterson theory. Analysis of each of the three contributions viz. interactional, free volume and P* to VE has shown that the interactional contribution are positive for all studied systems, the free volume and P* contributions are negative for all the binary mixtures.


Density Speed of sound Viscosity 2-Methoxyaniline Chlorinated ethane molecules PFP theory 



The authors are thankful to M/s. Anton Paar, Hyderabad for providing the research facilities and the Managements of Vignan Institute of Technology & Science, Hyderabad and J.K.C College, Guntur for their encouragement towards the research work.


  1. 1.
    Giner, B., Martín, S., Artigas, H., López, M.C., Lafuente, C.: Study of weak molecular interactions through thermodynamic mixing properties. J. Phys. Chem. B 110(35), 17683–17690 (2006)CrossRefGoogle Scholar
  2. 2.
    Kinart, C.M., Kinart, W.J., Chęcińska-Majak, D., Ćwiklińska, A.: Volumetric behavior of binary liquid mixtures of 2-methoxyethanol with n-butylamine, sec-butylamine and tert-butylamine. J. Mol. Liq. 109(1), 19–22 (2004)CrossRefGoogle Scholar
  3. 3.
    Iloukhani, H., Zoorasna, N., Soleimani, R.: Excess molar volumes and speeds of sound of tetrahydrofuran with chloroethanes or chloroethenes at 298.15 K. Phys. Chem. Liq. 43(4), 391–401 (2005)CrossRefGoogle Scholar
  4. 4.
    Mukesh, B., Gowrisankar, M., Krishna, T.S., Sreekanth, T.: Studies on the importance of thermodynamic and transport properties of liquid mixtures at various temperatures. J. Thermal Anal. Calorimetry 132(2), 1167–1181 (2018)CrossRefGoogle Scholar
  5. 5.
    Nagababu, P., Babu, S., Santos, D.F., Gowrisankar, M.: Investigation of molecular interactions in binary mixtures of homologous series of aliphatic alcohols with 2-methoxyaniline at various temperatures. Phys. Chem. Liq. (2018). CrossRefGoogle Scholar
  6. 6.
    Reddy, D.V.B., Krishnaiah, A., Ramanjaneyulu, K.: Ultrasonic velocities and isentropic compressibilities of acetophenone with some chloroethanes and chloroethenes at 303.15 K. Phys. Chem. Liq. 20(4), 221–226 (1989)CrossRefGoogle Scholar
  7. 7.
    Singh, J., Joshi, I.M., Sharma, S.C.: Excess molar volumes of (dibutyl ether + trichloromethane or tetrachloromethane or 1,2-dichloroethane or 1,1,2-trichloroethane or 1,1,2,2-tetrachloroethane or pentachloroethane) at the temperature 303.15 K. J. Chem. Themodyn. 25(9), 1049–1054 (1993)CrossRefGoogle Scholar
  8. 8.
    Surendranath, K.N., Krishnaiah, A., Ramakrishna, M.: Thermodynamics of binary mixtures containing cyclic ethers: part III. Excess enthalpies of oxolane and 1,4-dioxane with chloroethanes and chloroethenes. Fluid Phase Equilib. 71(1–2), 169–176 (1992)CrossRefGoogle Scholar
  9. 9.
    Teodorescu, M., Linek, J.: Densities and excess volumes of pentan-3-one + 1,2-dichloroethane, + 1,3-dichloropropane, + 1,4-dichlorobutane, + trichloromethane, + 1,1,1-trichloroethane, + 1,1,2,2-tetrachloroethane binary mixtures at 298.15 K. Fluid Phase Equilib. 146(1–2), 155–160 (1998)CrossRefGoogle Scholar
  10. 10.
    Riddick, J., Bunger, W.B., Sakano, T.K.: Techniques of Chemistry, Organic Solvents, Physical Properties and Methods of Purifications. Wiley Interscience, New York (1986)Google Scholar
  11. 11.
    Timmermans, J.: Physico-Chemical Constants of Pure Organic Compounds. Elsevier Publishing, Amsterdam (1950)Google Scholar
  12. 12.
    Ciocirlan, O., Teodorescu, M., Dragoescu, D., Iulian, O., Barhala, A.: Densities and excess molar volumes of the binary mixtures of cyclopentanone with chloroalkanes at T = (288.15, 298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 55(9), 3891–3895 (2010)CrossRefGoogle Scholar
  13. 13.
    Kumar, S., Jeevanandham, P.: Densities, viscosities, refractive indices and excess properties of aniline and o-anisidine with 2-alkoxyethanols at 303.15 K. J. Mol. Liq. 174, 34–41 (2012)CrossRefGoogle Scholar
  14. 14.
    Bransky, M., Ruzicka, V.: Estimation of the heat capacities of organic liquids as a function of temperature using group additivity: an amendment. J. Phys. Chem. Ref. Data 33, 1071–1081 (2004)CrossRefGoogle Scholar
  15. 15.
    Reddy, K.D., Venkatramana, L., Gardas, R.L., Narasimha Rao, C., Sivakumar, K.: J. Solution Chem. 44, 327–359 (2015)CrossRefGoogle Scholar
  16. 16.
    Raghuram, N., Suresh, R., Ramesh, G., Sowjanya, G., Jyostna, T.S.: Excess parameters for the binary mixtures of sulfolane with chloroethanes at different temperatures. J. Thermal Anal. Calorimetry 119(3), 2107–2117 (2015)CrossRefGoogle Scholar
  17. 17.
    Syeda, A.B., Koppula, A.J., Boodida, S., Nallani, S.: Excess molar volumes and sound speed in (phenylacetonitrile + 1,2-dichloroethane), (phenylacetonitrile + 1,1,2-trichloroethane), (phenylacetonitrile + 1,1,2,2-tetrachloroethane), (phenylacetonitrile + trichloroethene) and (phenylacetonitrile + tetrachloroethene) at temperatures of (303.15, 308.15, and 313.15) K. J. Chem. Eng. Data 55(3), 1405–1410 (2009)CrossRefGoogle Scholar
  18. 18.
    Sathyanarayan, B., Jyostna, T., Sathyanarayana, N.: Acoustic studies of binary mixtures of N-methylacetamide with some chloroethanes and chloroethenes at 308.15 K. Ind. J. Pure Appl. Phys. 44, 587–591 (2006)Google Scholar
  19. 19.
    Oswal, S.L., Patel, B.M., Patel, A.M., Ghael, N.Y.: Densities, speeds of sound, isentropic compressibilities and refractive indices of binary mixtures of methyl methacrylate with hydrocarbons, haloalkanes and alkyl amines. Fluid Phase Equilib. 206(1–2), 313–329 (2003)CrossRefGoogle Scholar
  20. 20.
    Oswal, S.L., Patel, I.N.: Speed of sound, isentropic compressibility and refractive index of binary mixtures of alkyl ethanoates with chloroalkanes at 303.15 K. J. Mol. Liq. 116(2), 99–107 (2005)CrossRefGoogle Scholar
  21. 21.
    Benson, G.C., Kiyohara, O.: Evaluation of excess isentropic compressibilities and isochoric heat capacities. J. Chem. Thermodyn. 11, 1061–1064 (1979)CrossRefGoogle Scholar
  22. 22.
    Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)CrossRefGoogle Scholar
  23. 23.
    Sathyanarayana, B., Ranjithkumar, B., Jyostna, T.S., Satyanarayana, N.: Densities and viscosities of binary liquid mixtures of N-methyl acetamide with some chloroethanes and chloroethenes at T = 308.15 K. J. Chem. Thermodyn. 39(1), 16–21 (2007)CrossRefGoogle Scholar
  24. 24.
    Raveendra, M., Chandrasekhar, M., Chandrasekhar Reddy, K., Venkatesulu, A., Sivakumar, K., Dayananda Reddy, K.: Study on thermo physical properties of binary mixture containing aromatic alcohol with aromatic, substituted aromatic amines at different temperatures interms of FT-IR, 1H NMR spectroscopic and DFT method. Fluid Phase Equilib. 462, 85–99 (2018)CrossRefGoogle Scholar
  25. 25.
    Oswal, S.L., Desai, H.S.: Studies of viscosity and excess molar volume of binary mixtures 1-alkanol + di-n-propylamine and + di-n-butylamine mixtures at 303.15 and 313.15 K. Fluid Phase Equilib. 186(1–2), 81–102 (2001)CrossRefGoogle Scholar
  26. 26.
    Philippe, R., Jambon, C., Cléchet, P.: Thermodynamic properties of dimethylsulfoxide + halomethane mixtures II. Vapour pressures and excess thermodynamic functions. J. Chem Thermodyn. 5(3), 431–444 (1973)CrossRefGoogle Scholar
  27. 27.
    Rao, P.V., Gowrisankar, M., Venkatramana, L., Krishna, T.S., Ravindhranath, K.: Studies on the importance of nature of substituent on the thermodynamic and transport properties of liquid mixtures at various temperatures. J. Chem. Thermodyn. 101, 92–102 (2016)CrossRefGoogle Scholar
  28. 28.
    van Tra, H., Patterson, D.: Volumes of mixing and the P* effect: part I. Hexane isomers with normal and branched hexadecane. J. Solution Chem. 11(11), 793–805 (1982)CrossRefGoogle Scholar
  29. 29.
    Patterson, D., Delmas, G.: Corresponding states theories and liquid models. Discuss. Faraday Soc. 49, 98–105 (1970)CrossRefGoogle Scholar
  30. 30.
    Prigogine, I.: The Molecular Theory of Solution. North Holland Corp, Amesterdam (1957)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • B. Mukesh
    • 1
  • T. Sreekanth
    • 2
    Email author
  • M. Gowrisankar
    • 3
  • M. Raveendra
    • 4
  1. 1.Department of PhysicsVignan Institute of Technology and ScienceDeshmukhiIndia
  2. 2.Department of PhysicsJ.N.T.U.H-College of EngineeringMedakIndia
  3. 3.Department of ChemistryJ.K.C.C. Acharya Nagarjuna UniversityGunturIndia
  4. 4.Department of ChemistryRajiv Gandhi University of Knowledge Technologies, Dr. APJ Abdul Kalam, IIITOngoleIndia

Personalised recommendations