Advertisement

Journal of Solution Chemistry

, Volume 48, Issue 11–12, pp 1671–1684 | Cite as

Thermodynamic Study on the Interaction of Nicotinic Acid with H+, Na+, Ca2+ and Mg2+ at Different Temperatures and Ionic Strengths

  • Kavosh MajlesiEmail author
  • Clemente Bretti
  • Concetta De Stefano
  • Gabriele Lando
  • Kimia Majlesi
  • Silvio Sammartano
Article
  • 65 Downloads

Abstract

Protonation of nicotinic acid has been investigated by means of potentiometric titrations at different temperatures 283.15 ≤ T (K) ≤ 383.15 and ionic strengths of NaCl(aq), 0.12 ≤ I (mol·kg−1) ≤ 4.84 and mixed NaCl with MgCl2 or CaCl2. Stability constants of the CaL+ and MgL+ species were obtained by means of the ΔpK method. Different models (e.g. Debye–Hückel type equation, Specific Ion Interaction Theory, Pitzer and van’t Hoff) were applied to account for the ionic strength and temperature dependences, in order to obtain data in a standard state and parameters to calculate stability constants in any point of our experimental domain. Speciation studies were performed simulating the conditions of natural fluids. Literature data were investigated for comparison with the experimental results here obtained.

Keywords

Nicotinic acid Modeling Ionic strength Temperature Speciation Natural fluids 

Abbreviations

p

Pressure

I

Ionic strength

T

Temperature in Kelvin degrees

u

Uncertainty

L

Deprotonated ligand

log10 γ

Logarithm of the activity coefficient

Ci

Ionic strength dependence parameter for the ith protonation step in the EDH equation

km

Setschenow coefficient, salt coefficient

εik

Specific interaction coefficient of the species i with the species k

A

Constant of the Debye–Hückel equation, dependent on temperature

θ

Term of the Pitzer equation accounting for binary interactions of ions of same sign but different charge interactions

ψ

Term of the Pitzer equation accounting for the triple interactions

H0)0

Standard protonation enthalpy at infinite dilution

τ

Reference temperature, 298.15 K in our case

log10KM

Logarithm of the stability constant of the ML species, superscript “0” indicates infinite dilution

c0 and c1

Ionic strength dependence parameters of the weak interaction model

Notes

Acknowledgements

This research was supported by MIUR (Grant PRIN 2015 - 2015MP34H3) for partial funding.

Supplementary material

10953_2019_915_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 34 kb)

References

  1. 1.
    Xu, X.J., Jiang, G.S.: Niacin-respondent subset of schizophrenia—a therapeutic review Eur. Rev. Med. Pharmacol. Sci. 19, 988–997 (2015)Google Scholar
  2. 2.
    Kirkland, J.B., Meyer-Ficca, M.L.: Niacin. In: Eskin, N.A.M. (ed.) Advances in Food and Nutrition Research, vol. 83, pp. 83–149. Academic Press, New York (2018)Google Scholar
  3. 3.
    Gaynon, M.W., Paulus, Y.M., Rahimy, E., Alexander, J.L., Mansour, S.E.: Effect of oral niacin on central retinal vein occlusion Graefes. Arch. Clin. Exp. Ophthalmol. 255, 1085–1092 (2017)Google Scholar
  4. 4.
    Wakade, C., Giri, B., Malik, A., Khodadadi, H., Morgan, J.C., Chong, R.K., Baban, B.: Niacin modulates macrophage polarization in Parkinson’s disease. J. Neuroimmunol. 320, 76–79 (2018)PubMedGoogle Scholar
  5. 5.
    Abdul Rahim, S., Hussain, S., Farooqui, M.: Binary complexes of nicotinic acid with transition metal ions in aqueous medium. Int. J. Chem. Sci. 12, 1299–1304 (2014)Google Scholar
  6. 6.
    Hernowo, E., Angkawijaya, A.E., Fazary, A.E., Ismadji, S., Ju, Y.H.: Complex stability and molecular structure studies of divalent metal ion with l-norleucine and vitamin B3. J. Chem. Eng. Data 56, 4549–4555 (2011)Google Scholar
  7. 7.
    Hussain, S., Abdul Rahim, S., Farooqui, M.: Studies of binary complexes of bivalent metal ions with nicotinic acid by potentiometry. J. Adv. Sci. Res. 3, 68–69 (2012)Google Scholar
  8. 8.
    Patil, A.B.: Potentiometric studies of ternary complexes of some transition metal(II) ions with nitrilotriacetic acid and iminodiacetic acid as primary ligands and nicotinic acid and ascobic acid as secondary ligands. Rasayan J. Chem. 5, 500–502 (2012)Google Scholar
  9. 9.
    Patil, A.B.: pH-metric studies of ternary complexes of some transition metal(II) ions with aspartic acid and glutamic acid as primary ligands and nicotinic acid and ascobic acid as secondary ligands. Rasayan J. Chem. 6, 161–163 (2013)Google Scholar
  10. 10.
    Rajhi, A.Y., Ju, Y.-H., Angkawijaya, A.E., Fazary, A.E.: Complex formation equilibria and molecular structure of divalent metal ions-vitamin B3-glycine oligopeptides systems. J. Solution Chem. 42, 2409–2442 (2013)Google Scholar
  11. 11.
    Urbanska, J., Podsiadly, H.: Interaction of niacin with copper ions. Polyhedron 60, 130–139 (2013)Google Scholar
  12. 12.
    Urdaneta, N., Madden, W., Landaeta, V.R., Rodriguez-Lugo, R., Hernandez, L., Lubes, V.: Formation studies of binary and ternary complexes of copper(II) with an oxazol derivative of nicotinic acid and some amino acids. J. Mol. Liq. 227, 218–222 (2017)Google Scholar
  13. 13.
    Xiao, S.X., Gu, H.W., Liu, Y.T., Luo, W., Xiao, F.B., Li, Q.G.: Preparation and thermochemical properties of ternary complexes of rare earth chlorides with nicotinic acid and 8-hydroxylquinoline. J. Chem. Eng. Data 57, 269–273 (2012)Google Scholar
  14. 14.
    Xiao, S.X., Li, A.T., Li, C.H., Xiao, H.Y., Xu, X.Y., Gu, H.W., Li, Q.G.: Determination of the standard molar enthalpy of formation of the ternary complex of neodymium with vitamin B3 and 8-hydroxylquinoline by microcalorimetry. J. Therm. Anal. Calorim. 112, 1533–1538 (2013)Google Scholar
  15. 15.
    Bhasin, S.K., Prakash, O., Jain, D.S., Gaur, J.N.: Polarographic behavior of the complexes formed by lead(II) and cadmium(II) with nicotinate ions. J. Indian Chem. Soc. 55, 1307–1308 (1978)Google Scholar
  16. 16.
    Chiacchierini, E., D’Ascenzo, G., Marino, A., De Angelis, G.: The reaction of chromium(III) with nicotinic and isonicotinic acids. Ann. Chim. (Rome) 67, 547–556 (1978)Google Scholar
  17. 17.
    Chitale, V.K., Pitre, K.S.: Ternary complexes of lead(II) with itaconic acid and nicotinic acid: a polarographic study. Can. J. Chem. 61, 1941–1943 (1983)Google Scholar
  18. 18.
    Di, Y.Y., Gao, W.J., Yang, W.W., Kong, Y.X., Tan, Z.C.: Synthesis, characterization, and thermodynamic study of the coordination compound Cd(HNic)2Cl2(s). J. Chem. Eng. Data 53, 1602–1606 (2008)Google Scholar
  19. 19.
    Di, Y.Y., Kong, Y.X., Yang, W.W., Sun, L., Tan, Z.C.: Synthesis, characterization, and thermodynamic study of the solid state coordination compound Ca(Nic)2(s) (Nic = nicotinate). J. Chem. Eng. Data 53, 2777–2782 (2008)Google Scholar
  20. 20.
    Jain, A.K., Khan, F.: Thermodynamic stability of Cd(II) complexes with some amino acids and nicotinic acid: a polarographic study. J. Indian Counc. Chem. 12, 42–44 (1996)Google Scholar
  21. 21.
    Kondarasaiah, M.H., Ananda, S.: Kinetic and mechanistic study of Ru(III)-nicotinic acid complex formation by oxidation of bromamine-T in acid solution. Oxid. Commun. 27, 140–147 (2004)Google Scholar
  22. 22.
    Raditzky, B., Schmeide, K., Sachs, S., Geipel, G., Bernhard, G.: Interaction of uranium(VI) with nitrogen containing model ligands studied by laser-induced fluorescence spectroscopy. Polyhedron 29, 620–626 (2010)Google Scholar
  23. 23.
    Sacconi, L.: Metal complexes of the nicotinic acid series. Ann. Chim. (Rome) 40, 386–395 (1950)Google Scholar
  24. 24.
    Urbanska, J., Podsiadly, H.: Interaction of niacin with nickel(II) ions. J. Electroanal. Chem. 637, 55–62 (2009)Google Scholar
  25. 25.
    Zhong, G., Gu, M., Zhang, Y.: Solid–liquid reaction synthesis and characterization of bioinorganic complexes of nicotinic acid with antimony(III) and bismuth(III) ion. Adv. Mater. Res. 282–283, 267–270 (2011)Google Scholar
  26. 26.
    Goncalves, E.M., Bernardes, C.E.S., Diogo, H.P., Minas da Piedade, M.E.: Energetics and structure of nicotinic acid (niacin). J. Phys. Chem. B 114, 5475–5485 (2010)PubMedGoogle Scholar
  27. 27.
    Goncalves, E.M., Joseph, A., Conceicao, A.C.L., Minas da Piedade, M.E.: Potentiometric titration study of the temperature and ionic strength dependence of the acidity constants of nicotinic acid (niacin). J. Chem. Eng. Data 56, 2964–2970 (2011)Google Scholar
  28. 28.
    Goncalves, E.M., Rego, T.S., Minas da Piedade, M.E.: Thermochemistry of aqueous pyridine-3-carboxylic acid (nicotinic Acid). J. Chem. Thermodyn. 43, 974–979 (2011)Google Scholar
  29. 29.
    Ashton, L.A., Bullock, J.I.: Effect of temperature on the ionisation constants of 2-, 3- and 4-nitrobenzoic, phthalic and nicotinic acids in aqueous solution. J. Chem. Soc. Faraday Trans. 78, 1177–1187 (1982)Google Scholar
  30. 30.
    Evans, R.F., Herington, E.F.G., Kynaston, W.: Determination of dissociation constants of the pyridine-monocarboxylic acids by ultra-violet photoelectric spectrophotometry. Trans. Faraday Soc. 49, 1284–1292 (1953)Google Scholar
  31. 31.
    Garcia, B., Ibeas, S., Leal, J.M.: Zwitterionic pyridinecarboxylic acids. J. Phys. Org. Chem. 9, 593–597 (1996)Google Scholar
  32. 32.
    Kuranova, N.N., Dushina, S.V., Sharnin, V.A.: Solvent effect of aqueous ethanol on complex formation and protolytic equilibria in nicotinic acid solutions. Russ. J. Inorg. Chem. 53, 1943–1947 (2008)Google Scholar
  33. 33.
    Lumme, P.O.: Ionization and ultraviolet absorption of 2-, 3-, and 4-pyridinecarboxylic acids. Suomen Kem. B30, 168–175 (1957)Google Scholar
  34. 34.
    Martell, A.E., Smith, R.M., Motekaitis, R.J.: NIST Standard Reference Database 46, vers.8, Gaithersburg (2004)Google Scholar
  35. 35.
    Niazi, M.S.K., Mollin, J.: Dissociation-constants of some amino-acid and pyridinecarboxylic acids in ethanol–H2O mixtures. Bull. Chem. Soc. Jpn 60, 2605–2610 (1987)Google Scholar
  36. 36.
    Orekhova, Z., Ben-Hamo, M., Manzurola, E., Apelblat, A.: Electrical conductance and volumetric studies in aqueous solutions of nicotinic acid. J. Solution Chem. 34, 687–700 (2005)Google Scholar
  37. 37.
    Tam, K.Y., Takacs-Novak, K.: Multiwavelength spectrophotometric determination of acid dissociation constants: Part II. First derivative vs. target factor analysis. Pharm. Res. 16, 374–381 (1999)PubMedGoogle Scholar
  38. 38.
    Tam, K.Y., Takacs-Novak, K.: Multi-wavelength spectrophotometric determination of acid dissociation constants: a validation study. Anal. Chim. Acta 434, 157–167 (2001)Google Scholar
  39. 39.
    Thompson, L.C.: Complexes of rare earths 0.8. Picolinic acid. Inorg. Chem. 3, 1319–1321 (1964)Google Scholar
  40. 40.
    De Robertis, A., De Stefano, C., Sammartano, S., Rigano, C.: The determination of formation constants of weak complexes by potentiometric measurements: experimental procedures and calculation methods. Talanta 34, 933–938 (1987)PubMedGoogle Scholar
  41. 41.
    Brønsted, J.N.: Calculation of the osmotic and activity functions in solutions of uni-univalent salts. J. Am. Chem. Soc. 44, 938–948 (1922)Google Scholar
  42. 42.
    Ciavatta, L.: The specific interaction theory in evaluating ionic equilibria. Ann. Chim. (Roma) 70, 551–567 (1980)Google Scholar
  43. 43.
    Grenthe, I., Puigdomenech, I.: Modelling in Aquatic Chemistry. OECD, Paris (1997)Google Scholar
  44. 44.
    Guggenheim, E.A.: The specific thermodynamic properties of aqueous solutions of strong electrolytes. Philos. Mag. 19, 588–643 (1935)Google Scholar
  45. 45.
    Guggenheim, E.A., Turgeon, J.C.: Specific interaction of ions. Trans. Faraday Soc. 51, 747–761 (1955)Google Scholar
  46. 46.
    Biederman, G.: Ionic media. In: Dahlem Workshop on the Nature of Seawater. Dahlem Konferenzen, Berlin, pp. 339–362 (1975)Google Scholar
  47. 47.
    Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)Google Scholar
  48. 48.
    Pitzer, K.S. (ed.): Activity Coefficients in Electrolyte Solutions. CRC Press, Boca Raton (1991)Google Scholar
  49. 49.
    Daniele, P.G., Foti, C., Gianguzza, A., Prenesti, E., Sammartano, S.: Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution. Coord. Chem. Rev. 252, 1093–1107 (2008)Google Scholar
  50. 50.
    Bretti, C., De Stefano, C., Lando, G., Sammartano, S.: Thermodynamic properties of melamine (2,4,6-triamino-1,3,5-triazine) in aqueous solution. Effect of ionic medium, ionic strength and temperature on the solubility and acid–base properties. Fluid Phase Equilib. 355, 104–113 (2013)Google Scholar
  51. 51.
    Pytkowicz, R.M. (ed.): Activity Coefficients in Electrolyte Solutions, vol. 1. CRC Press Inc, Boca Raton (1979)Google Scholar
  52. 52.
    Pytkowicz, R.M. (ed.): Activity Coefficients in Electrolyte Solutions, vol. 2. CRC Press Inc., Boca Raton (1979)Google Scholar
  53. 53.
    De Stefano, C., Milea, D., Pettignano, A., Sammartano, S.: Modeling ATP protonation and activity coefficients in NaClaq and KClaq by SIT and Pitzer equations. Biophys. Chem. 121, 121–130 (2006)PubMedGoogle Scholar
  54. 54.
    Crea, F., Giacalone, A., Gianguzza, A., Piazzese, D., Sammartano, S.: Modelling of natural synthetic polyelectrolyte interactions in natural waters by using SIT, Pitzer and ion pairing approaches. Mar. Chem. 99, 93–105 (2006)Google Scholar
  55. 55.
    Bretti, C., Foti, C., Porcino, N., Sammartano, S.: SIT parameters for 1:1 electrolytes and correlation with Pitzer coefficients. J. Solution Chem. 35, 1401–1415 (2006)Google Scholar
  56. 56.
    Crea, F., Foti, C., De Stefano, C., Sammartano, S.: SIT parameters for 1:2 electrolytes and correlation with Pitzer coefficients. Ann. Chim. (Rome) 97, 85–95 (2007)Google Scholar
  57. 57.
    Crea, F., De Stefano, C., Foti, C., Sammartano, S.: SIT parameters for the dependence of (poly)carboxylate activity coefficients on ionic strength in (C2H4)4NIaq (0 < I < 1.2 mol·kg−1) and (CH3)4NClaq (0 < I < 3.9 mol·kg−1) in the temperature range 278 < T < 328 K, and correlation with Pitzer parameters. J. Chem. Eng. Data 52, 2195–2203 (2007)Google Scholar
  58. 58.
    Bretti, C., Foti, C., Porcino, N., Sammartano, S.: SIT parameters for 1:1 electrolytes and correlation with Pitzer coefficients. J. Solution Chem. 35, 1401–1415 (2006)Google Scholar
  59. 59.
    Crea, F., De Stefano, C., Foti, C., Sammartano, S.: SIT parameters for the dependence of (poly)carboxylate activity coefficients on ionic strength in (C2H5)4NIaq (0 < I < 1.2 mol·kg−1) and (CH3)4NClaq (0 < I < 3.9 mol·kg−1) in the temperature range 278 < T < 328 K, and correlation with Pitzer parameters. J. Chem. Eng. Data 52, 2195–2203 (2007)Google Scholar
  60. 60.
    Scatchard, G.: Concentrated solutions of strong electrolytes. Chem. Rev. 19, 309–327 (1936)Google Scholar
  61. 61.
    Foti, C., Rigano, C., Sammartano, S.: Analysis of thermodynamic data for complex formation: protonation of THAM and fluoride ion at different temperatures and ionic strengths. Ann. Chim. (Rome) 89, 87–98 (1999)Google Scholar
  62. 62.
    De Stefano, C., Sammartano, S., Mineo, P., Rigano, C.: Computer tools for the speciation of natural fluids. In: Gianguzza, A., Pelizzetti, E., Sammartano, S. (eds.) Marine Chemistry—An Environmental Analytical Chemistry Approach, pp. 71–83. Kluwer Academic Publishers, Amsterdam (1997)Google Scholar
  63. 63.
    Bretti, C., Crea, F., De Stefano, C., Sammartano, S., Vianelli, G.: Some thermodynamic properties of DL-tyrosine and DL-tryptophan. Effect of the ionic medium, ionic strength and temperature on the solubility and acid–base properties. Fluid Phase Equilib. 314, 185–197 (2012)Google Scholar
  64. 64.
    Bretti, C., Giuffrè, O., Lando, G., Sammartano, S.: Solubility, protonation and activity coefficients of some aminobenzoic acids in NaClaq and (CH3)4NClaq, at different salt concentrations, at T = 298.15 K. J. Mol. Liq. 212, 825–832 (2015)Google Scholar
  65. 65.
    Bretti, C., Giuffrè, O., Lando, G., Sammartano, S.: Modeling solubility and acid–base properties of some amino acids in aqueous NaCl and (CH3)4NCl aqueous solutions at different ionic strengths and temperatures. SpringerPlus 5, 928 (2016)PubMedPubMedCentralGoogle Scholar
  66. 66.
    Bretti, C., De Stefano, C., Lando, G., Majlesi, K., Sammartano, S.: Thermodynamics (solubility and protonation constants) of risedronic acid in different media and temperatures (283.15–318.15 K). J. Solution Chem. 46, 1903–1927 (2017)Google Scholar
  67. 67.
    Bretti, C., Cigala, R.M., De Stefano, C., Lando, G., Sammartano, S.: Thermodynamics for proton binding of pyridine in different ionic media at different temperatures. J. Chem. Eng. Data 59, 143–156 (2014)Google Scholar
  68. 68.
    Berto, S., Daniele, P.G., Lando, G., Prenesti, E., Sammartano, S.: Methodological aspects in the study of alkali metal ion weak complexes using different ISEs electrodes. Int. J. Electrochem. Sci. 7, 10976–10986 (2012)Google Scholar
  69. 69.
    Bretti, C., Cigala, R.M., Crea, F., Lando, G., Sammartano, S.: Thermodynamics of proton binding and weak (Cl, Na+ and K+) species formation, and activity coefficients of 1,2-dimethyl-3-hydroxypyridin-4-one (deferiprone). J. Chem. Thermodyn. 77, 98–106 (2014)Google Scholar
  70. 70.
    Cigala, R.M., Crea, F., De Stefano, C., Lando, G., Milea, D., Sammartano, S.: Modeling the acid–base properties of glutathione in different ionic media, with particular reference to natural waters and biological fluids. Amino Acids 43, 629–648 (2012)PubMedGoogle Scholar
  71. 71.
    De Robertis, A., De Stefano, C., Sammartano, S., Gianguzza, A.: Equilibrium studies in natural fluids. A chemical speciation model for the major constituents of seawater. Chem. Spec. Bioavail. 6, 65–84 (1994)Google Scholar
  72. 72.
    Bretti, C., Cukrowski, I., De Stefano, C., Lando, G.: Solubility, activity coefficients and protonation sequence of risedronic acid. J. Chem. Eng. Data 59, 3728–3740 (2014)Google Scholar
  73. 73.
    Crea, F., De Stefano, C., Foti, C., Lando, G., Milea, D., Sammartano, S.: Alkali-metal ion complexes with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Their properties in solution. Met. Ions Life Sci. 16, 133–166 (2016)PubMedGoogle Scholar
  74. 74.
    Bretti, C., Cigala, R.M., De Stefano, C., Lando, G., Sammartano, S.: Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant S,S-EDDS in biological fluids and natural waters. Chemosphere 150, 341–356 (2016)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità degli Studi di MessinaMessina (Vill. S. Agata)Italy
  3. 3.Private LaboratoryTehranIran

Personalised recommendations