Advertisement

Apparent Molar (Volumetric/Compressibility) and Transport Properties of d-Maltose-1-Butyl-3-methylimidazolium Hexafluorophosphate—Water Ternary Systems at Different Temperatures

  • Tanu Sharma
  • Ruby Rani
  • Ashwani Kumar
  • Rajinder K. BamezaiEmail author
Article
  • 15 Downloads

Abstract

Densities, speeds of sound and viscosities of different molalities of d-maltose in aqueous solutions of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate, have been measured, for temperature steps of 5 K, from 293.15 to 313.15 K at atmospheric pressure. From the experimental data, apparent molar volumes, limiting apparent molar volumes, apparent molar compressibilities, limiting apparent molar compressibilities, transfer volumes and compressibilities, limiting apparent molar expansibilities, thermal expansion coefficients, relative viscosities and Jones–Dole B-coefficients have been estimated. The results have been examined in terms of hydrophobic–ionic and hydrophilic–ionic interactions. It is observed that strong solute–solvent interactions exist in the ternary system which increase with increasing ionic liquid concentration.

Keywords

1-Butyl-3-methylimidazolium hexafluorophosphate d-Maltose Apparent molar volume Transport properties Compressibility 

Notes

Compliance with Ethical Standards

Conflict of interest

No potential conflict of interest was reported by the authors.

Supplementary material

10953_2019_880_MOESM1_ESM.docx (145 kb)
Supplementary material 1 (DOCX 145 kb)

References

  1. 1.
    Wilkes, J.S.: Properties of ionic liquid solvents for catalysis. J. Mol. Catal. A 214, 11–17 (2004)CrossRefGoogle Scholar
  2. 2.
    Brennecke, J.F., Maginn, E.J.: ionic liquids: innovative fluids for chemical processing. AIChE J. 47, 2384–2389 (2001)CrossRefGoogle Scholar
  3. 3.
    Wasserscheid, P., Keim, W.: Ionic liquids–new solutions for transition metal catalysis. Angew. Chem. Int. Ed. 39, 3772–3789 (2000)CrossRefGoogle Scholar
  4. 4.
    Keshapolla, D., Singh, V., Gardas, R.L.: Volumetric, acoustic and transport properties of binary mixtures of benzyldimethylammonium based ionic liquids with N,N- dimethylformamide at temperature from 293.15 to 328.15 K. J. Mol. Liq. 199, 330–338 (2014)CrossRefGoogle Scholar
  5. 5.
    Welton, T.: Room temperature ionic liquids solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)CrossRefGoogle Scholar
  6. 6.
    Endres, F., El Abedin, S.Z.: Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys. 8, 2101–2116 (2006)CrossRefGoogle Scholar
  7. 7.
    Freemantle, M.: An Introduction to Ionic Liquids. Royal Society of Chemistry, Cambridge (2009)Google Scholar
  8. 8.
    Singh, V., Banipal, P.K., Gardas, R.L., Banipal, T.S.: Speed of sound and apparent molar isentropic compressibility of 1-butyl-3-methylimidazolium bromide in aqueous monosaccharide solutions. J. Mol. Liq. 223, 54–59 (2016)CrossRefGoogle Scholar
  9. 9.
    Ping, J., Wang, Y., Ying, Y., Ji, F.: Determination of ascorbic acid levels in food samples by using an ionic liquid–carbon nanotube composite electrode. Food Chem. 135, 362–367 (2012)CrossRefGoogle Scholar
  10. 10.
    Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002)CrossRefGoogle Scholar
  11. 11.
    Lopes, A.C., Joao, K.G., Bogel-Lukasik, E.: Pretreatment and fractionation of wheat straw using various ionic liquids. J. Agric. Food Chem. 61, 7874–7882 (2013)CrossRefGoogle Scholar
  12. 12.
    Conceicao, L.J.A., Bogel-Lukasik, E., Bogel-Lukasik, R.: A new outlook on solubility of carbohydrates and sugar alcohols in ionic liquids. RSC Adv. 2, 1846–1855 (2012)CrossRefGoogle Scholar
  13. 13.
    Xu, A., Zhang, Y., Zhao, Y., Wang, J.: Cellulose dissolution at ambient temperature: role of preferential solvation of cations of ionic liquids by a cosolvent. Carbohyd. Polym. 92, 540–544 (2013)CrossRefGoogle Scholar
  14. 14.
    Ali, M., Sarkar, A., Tariq, M., Ali, A., Pandey, S.: Dilute aqueous 1-butyl-3-methylimidazolium hexafluorophosphate: properties and solvatochromic probe behavior. Green Chem. 9, 1252–1258 (2007)CrossRefGoogle Scholar
  15. 15.
    Wu, B., Zhang, Y., Wang, H.: Phase behaviour for ternary systems composed of ionic liquids + saccharides + water. J. Phys. Chem. B. 112, 6426–6429 (2008)CrossRefGoogle Scholar
  16. 16.
    Wu, B., Zhang, Y., Wang, H., Yang, L.: Temperature dependence of phase behaviour for ternary systems composed of ionic liquid + sucrose + water. J. Phys. Chem. B. 112, 13163–13165 (2008)CrossRefGoogle Scholar
  17. 17.
    Chen, Y., Zhang, S.: Phase behaviour of (1-alkyl-3-methyl imidazoliumtetrafluoroborate + 6-(hydroxymethyl) oxane-2,3,4,5-tetrol + water. J. Chem. Eng. Data 55, 278–282 (2010)CrossRefGoogle Scholar
  18. 18.
    Chen, Y., Meng, Y., Zhang, S., Zhang, Y., Liu, X., Yang, J.: Liquid–liquid equilibria of aqueous biphasic systems composed of 1-butyl-3-methyl imidazoliumtetrafluoroborate + sucrose/maltose + water. J. Chem. Eng. Data 55, 3612–3616 (2010)CrossRefGoogle Scholar
  19. 19.
    Quental, M.V., Passos, H., Kurnia, K.A., Coutinho, J.A.P., Freire, M.G.: Aqueous biphasic systems composed of ionic liquids and acetate-based salts: phase diagrams, densities and viscosities. J. Chem. Eng. Data 60, 1674–1682 (2015)CrossRefGoogle Scholar
  20. 20.
    Chen, Y., Fang, M., Bai, G., Zhuo, K., Yan, C.: Conductivities of 1-alkyl-3-methylimidazolium chloride ionic liquids in disaccharides + water solutions at 298.15 K. J. Chem. Eng. Data 61, 3779–3787 (2016)CrossRefGoogle Scholar
  21. 21.
    Banipal, P.K., Chahal, A.K., Banipal, T.S.: Studies on volumetric properties of some saccharides in aqueous potassium chloride solutions over temperature K. J. Chem. Thermodyn. 41, 452–483 (2009)CrossRefGoogle Scholar
  22. 22.
    Singh, V., Banipal, P.K., Banipal, T.S., Gardas, R.L.: Volumetric properties of disaccharides in aqueous solutions of benzyldimethylammonium acetate as a function of temperature. J. Chem. Eng. Data 60, 1764–1775 (2015)CrossRefGoogle Scholar
  23. 23.
    Wang, S., Jacquemin, J., Husson, P., Hardacre, C., Gomes, M.F.C.: Liquid–liquid miscibility and volumetric properties of aqueous solutions of ionic liquids as a function of temperature. J. Chem. Thermodyn. 41, 1206–1214 (2009)CrossRefGoogle Scholar
  24. 24.
    Jacquemin, J., Husson, P., Padua, A.A.H., Majer, V.: Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 8, 172–180 (2006)CrossRefGoogle Scholar
  25. 25.
    Zhang, J., Wu, W., Gao, H., Liu, Z., Han, B.: Conductivities and viscosities of the ionic liquid [Bmim][PF6] + water + ethanol and [Bmim][PF6] + water + acetone ternary mixtures. J. Chem. Eng. Data 48, 1315–1317 (2003)CrossRefGoogle Scholar
  26. 26.
    Rafiee, H.R., Frouzesh, F.: Volumetric properties of ionic liquids, 1-ethyl-3-ethylimidazolium chloride and 1-ethyl-3-methylimidazolium hydrogen sulphate in sucrose aqueous solutions at T = (293.15–313.15) K and ambient pressure. Fluid Phase Equib. 425, 120–126 (2016)CrossRefGoogle Scholar
  27. 27.
    Singh, V., Chhotaray, P.K., Gardas, R.L.: Effect of protic ionic liquid on the volumetric properties and taste behaviour of sucrose. Food Chem. 169, 478–483 (2015)CrossRefGoogle Scholar
  28. 28.
    Gurney, R.W.: Ionic Processes in Solution. McGraw Hill, New York (1953)Google Scholar
  29. 29.
    Jin, H.X., Chen, H.Y.: Volumetric properties for ionic liquid sucrose water systems. J. Chem. Eng. Data 56, 4392–4395 (2011)CrossRefGoogle Scholar
  30. 30.
    Shekaari, H., Kazempour, A.: Effect of ionic liquid, 1-octyl-3-methylimidazolium bromide, on the thermophysical properties of aqueous d-glucose solutions at 298.15 K. Fluid Phase Equilib. 309, 1–7 (2011)CrossRefGoogle Scholar
  31. 31.
    Shekaari, H., Mansoori, Y., Kazempour, A.: Conductance behavior of ionic liquids, 1-alkyl-3-methylimidazolium bromide, in aqueous d-xylose solutions. Electrochim. Acta 67, 104–108 (2012)CrossRefGoogle Scholar
  32. 32.
    Jin, H.X., Chen, H.Y.: Volumetric properties for ionic liquid + sucrose + water systems. J. Chem. Eng. Data 57, 4392–4395 (2011)CrossRefGoogle Scholar
  33. 33.
    McMillan Jr., W.G., Mayer, J.E.: The statistical thermodynamics of multicomponent systems. J. Chem. Phys. 13, 276–305 (1945)CrossRefGoogle Scholar
  34. 34.
    Kozak, J.J., Knight, W.S., Kauzman, W.: Solute–solute interactions in aqueous solutions. J. Chem. Phys. 48, 675–690 (1968)CrossRefGoogle Scholar
  35. 35.
    Krishnan, C.V., Friedman, H.L.: Enthalpy of alkyl sulphonates in water, heavy water, and water–alcohol mixtures and the interaction of water with methylene groups. J. Solution Chem. 2, 37–51 (1973)CrossRefGoogle Scholar
  36. 36.
    Franks, F., Pedley, M., Reid, D.S.: Solute interactions in dilute aqueous solutions, Part I. Microcalorimetric study of the hydrophobic interaction. J. Chem. Soc. Faraday Trans. 172, 359–367 (1976)CrossRefGoogle Scholar
  37. 37.
    Desnoyers, J.E., Arel, M., Perron, G., Jolicoeur, C.: Apparent molal volumes of alkali halides in water at 25 °C. Influence of structural hydration interactions on the concentration dependence. J. Phys. Chem. 73, 3346–3351 (1969)CrossRefGoogle Scholar
  38. 38.
    Conway, B.E.: Ionic Hydration in Chemistry and Biophysics. Elsevier, Amsterdam (1981)Google Scholar
  39. 39.
    Hepler, L.G.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969)CrossRefGoogle Scholar
  40. 40.
    Roy, M.N., Dakua, V.K., Sinha, B.: Partial molar volumes, viscosity B-coefficients, and adiabatic compressibilities of sodium molybdate in aqueous 1,3-dioxolane mixtures from 303.15 to 323.15 K. Int. J. Thermophys. 28, 1275–1284 (2007)CrossRefGoogle Scholar
  41. 41.
    Singh, V., Banipal, P.K., Banipal, T.S., Gardas, R.L.: Volumetric properties of 1-butyl-3-methylimidazolium bromide in aqueous solutions of D(−)-ribose and D(−)-arabinose at different temperature. J. Mol. Liq. 209, 352–357 (2015)CrossRefGoogle Scholar
  42. 42.
    Dhondge, S.S., Zodape, S.P., Parwate, D.V.: Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures. J. Chem. Thermodyn. 48, 207–212 (2012)CrossRefGoogle Scholar
  43. 43.
    Cabani, S., Conti, G., Matteoli, E.: Partial molal expansibilities of organic compounds in aqueous solution. I. Alcohols and ethers. J. Solution Chem. 5, 751–763 (1976)CrossRefGoogle Scholar
  44. 44.
    Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)CrossRefGoogle Scholar
  45. 45.
    Feakins, D., Freemantle, D.J., Lawrance, K.G.: Transition state treatment of the relative viscosity of electrolytic solutions. Applications to aqueous, non-aqueous and methanol + water systems. J. Chem. Soc. Faraday Trans. 70, 795–806 (1974)CrossRefGoogle Scholar
  46. 46.
    Marcus, Y.: Viscosity B-coefficients, structural entropies, heat capacity and the effects of ions on the structure of water. J. Solution Chem. 23, 831–848 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tanu Sharma
    • 1
  • Ruby Rani
    • 1
  • Ashwani Kumar
    • 1
  • Rajinder K. Bamezai
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of JammuJammuIndia

Personalised recommendations