Advertisement

Journal of Solution Chemistry

, Volume 48, Issue 4, pp 489–501 | Cite as

Experimental Study of Density, Viscosity and Equilibrium Carbon Dioxide Solubility in Some Aqueous Alkanolamine Solutions

  • Ali Rahimi
  • Ali T. Zoghi
  • Farzaneh FeyziEmail author
  • Amir Hossein Jalili
Article
  • 29 Downloads

Abstract

In this work, equilibrium solubility of CO2 in aqueous blends of different amines is examined. The amines used are methyldiethanolamine (MDEA), N,N-dimethylaminoethanol (DMAE), N,N-diethylaminoethanol (DEAE), 2-(2-aminoethylamino)ethanol (AEEA), and 3-methylamino propylamine (MAPA). New equilibrium solubility data for CO2 in aqueous solutions of DMAE + MAPA, DMAE + AEEA, MDEA + MAPA, MDEA + AEEA, DEAE + MAPA and DEAE + AEEA over a range of low pressures are obtained. Each of the solutions contains 40 wt% of a tertiary amine (DMAE, MDEA, DEAE) and 5 wt% of a primary/secondary amine (MAPA, AEEA). The experimental temperature was set to 313.15 K and the measured CO2 loading was in the range of 0.274–4.563 (mol CO2 per kg of solution). In order to make a better comparison, viscosities and densities of the amine solutions were also measured at 303.15–353.15 K. Experiments show that the aqueous DMAE + MAPA blend has the highest absorption capacity, and at the same time, its viscosity and density are in a desirable range.

Keywords

CO2 solubility Aqueous blends of amines Methyldiethanolamine N,N-Dimethylaminoethanol N,N-Diethylaminoethanol 3-Methylamino propylamine 2-(2-Aminoethylamino)ethanol 

Notes

Acknowledgement

The authors greatly appreciate the financial support for this research provided by the Research Institute of Petroleum Industries (RIPI).

References

  1. 1.
    Chowdhury, F.A., Yamada, H., Higashii, T., Goto, K., Onoda, M.: CO2 capture by tertiary amine absorbents: a performance comparison study. Ind. Eng. Chem. Res. 52, 8323–8331 (2013).  https://doi.org/10.1021/ie400825u CrossRefGoogle Scholar
  2. 2.
    Ma’mun, S., Svendsen, H.F., Hoff, K.A., Juliussen, O.: Selection of new absorbents for carbon dioxide capture. Energy Conversion Management 48, 251–258 (2007).  https://doi.org/10.1016/j.enconman.2006.04.007 CrossRefGoogle Scholar
  3. 3.
    Sabouni, R., Kazemian, H., Rohani, S.: Carbon dioxide adsorption in microwave-synthesized metal organic framework CPM-5: equilibrium and kinetics study. Microporous Mesoporous Mater. 175, 85–91 (2013).  https://doi.org/10.1016/j.micromeso.2013.03.024 CrossRefGoogle Scholar
  4. 4.
    Stewart, C., Hessami, M.-A.: A study of methods of carbon dioxide capture and sequestration—the sustainability of a photosynthetic bioreactor approach. Energy Conversion Management 46, 403–420 (2005).  https://doi.org/10.1016/j.enconman.2004.03.009 CrossRefGoogle Scholar
  5. 5.
    Sema, T., Naami, A., Fu, K., Edali, M., Liu, H., Shi, H., Liang, Z., Idem, R., Tontiwachwuthikul, P.: Comprehensive mass transfer and reaction kinetics studies of CO2 absorption into aqueous solutions of blended MDEA–MEA. Chem. Eng. J. 209, 501–512 (2012).  https://doi.org/10.1016/j.cej.2012.08.016 CrossRefGoogle Scholar
  6. 6.
    Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I.: Progress in carbon dioxide separation and capture: a review. J. Environ. Sci. 20, 14–27 (2008).  https://doi.org/10.1016/S1001-0742(08)60002-9 CrossRefGoogle Scholar
  7. 7.
    Zaman, M., Lee, J.H.: Carbon capture from stationary power generation sources: a review of the current status of the technologies. Korean J. Chem. Eng. 30, 1497–1526 (2013)CrossRefGoogle Scholar
  8. 8.
    Mondal, M.K., Balsora, H.K., Varshney, P.: Progress and trends in CO2 capture/separation technologies: A review. Energy 46, 431–441 (2012).  https://doi.org/10.1016/j.energy.2012.08.006 CrossRefGoogle Scholar
  9. 9.
    Yu, C.-H., Huang, C.-H., Tan, C.-S.: A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12, 745–769 (2012)CrossRefGoogle Scholar
  10. 10.
    Leung, D.Y.C., Caramanna, G., Maroto-Valer, M.M.: An overview of current status of carbon dioxide capture and storage technologies. Ren. Sustan. Energy Revi. 39, 426–443 (2014).  https://doi.org/10.1016/j.rser.2014.07.093 CrossRefGoogle Scholar
  11. 11.
    Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D.: Advances in CO2 capture technology—The U.S. Department of Energy’s carbon sequestration program. Int. J. Greenhouse Gas Cont. 2, 9–20 (2008).  https://doi.org/10.1016/S1750-5836(07)00094-1 CrossRefGoogle Scholar
  12. 12.
    Ghanbarabadi, H., Khoshandam, B.: Simulation and comparison of Sulfinol solvent performance with amine solvents in removing sulfur compounds and acid gases from natural sour gas. J. Nat. Gas Sci. Eng. 22, 415–420 (2015).  https://doi.org/10.1016/j.jngse.2014.12.024 CrossRefGoogle Scholar
  13. 13.
    Rebolledo-Libreros, M.A.E., Trejo, A.: Gas solubility of CO2 in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol. Fluid Phase Equilib. 218, 261–267 (2004).  https://doi.org/10.1016/j.fluid.2003.12.012 CrossRefGoogle Scholar
  14. 14.
    Rebolledo-Morales, M.Á., Rebolledo-Libreros, M.E., Trejo, A.: Equilibrium solubility of CO2 in aqueous solutions of 1-amino-2-propanol as function of concentration, temperature, and pressure. J. Chem. Thermodyn. 43, 690–695 (2011).  https://doi.org/10.1016/j.jct.2010.12.008 CrossRefGoogle Scholar
  15. 15.
    Rebolledo-Libreros, M.E., Trejo, A.: Gas solubility of H2S in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol at 313, 343, and 393 K in the range 2.5–1036 kPa. Fluid Phase Equilib. 224, 83–88 (2004).  https://doi.org/10.1016/j.fluid.2004.06.049 CrossRefGoogle Scholar
  16. 16.
    Mumford, K.A., Wu, Y., Smith, K.H., Stevens, G.W.: Review of solvent based carbon-dioxide capture technologies. Frontiers Chem. Sci. Eng. 9, 125–141 (2015).  https://doi.org/10.1007/s11705-015-1514-6 CrossRefGoogle Scholar
  17. 17.
    Gao, H., Xu, B., Liu, H., Liang, Z.: Effect of amine activators on aqueous N,N-diethylethanolamine Solution for postcombustion CO2 capture. Energy Fuels 30, 7481–7488 (2016).  https://doi.org/10.1021/acs.energyfuels.6b00671 CrossRefGoogle Scholar
  18. 18.
    Sobrino, M., Concepción, E.I., Gómez-Hernández, Á., Martín, M.C., Segovia, J.J.: Viscosity and density measurements of aqueous amines at high pressures: MDEA–water and MEA–water mixtures for CO2 capture. J. Chem. Thermodyn. 98, 231–241 (2016).  https://doi.org/10.1016/j.jct.2016.03.021 CrossRefGoogle Scholar
  19. 19.
    Mandal, B.P., Kundu, M., Bandyopadhyay, S.S.: Density and viscosity of aqueous solutions of (N-methyldiethanolamine + monoethanolamine), (N-methyldiethanolamine + diethanolamine), (2-amino-2-methyl-1-propanol + monoethanolamine), and (2-amino-2-methyl-1-propanol + diethanolamine). J. Chem. Eng. Data 48, 703–707 (2003).  https://doi.org/10.1021/je020206a CrossRefGoogle Scholar
  20. 20.
    Park, M.K., Sandall, O.C.: Solubility of carbon dioxide and nitrous oxide in 50 mass methyldiethanolamine. J. Chem. Eng. Data 46, 166–168 (2001).  https://doi.org/10.1021/je000190t CrossRefGoogle Scholar
  21. 21.
    Hosseini, Jenab M., Abedinzadegan, Abdi M., Najibi, S.H., Vahidi, M., Matin, N.S.: Solubility of carbon dioxide in aqueous mixtures of N-methyldiethanolamine + piperazine + sulfolane. J. Chem. Eng. Data. 50, 583–586 (2005).  https://doi.org/10.1021/je049666p CrossRefGoogle Scholar
  22. 22.
    Zoghi, A.T., Feyzi, F., Zarrinpashneh, S.: Equilibrium solubility of carbon dioxide in a 30 wt% aqueous solution of 2-((2-aminoethyl)amino)ethanol at pressures between atmospheric and 4400 kPa: An experimental and modeling study. J. Chem. Thermodyn. 44, 66–74 (2012).  https://doi.org/10.1016/j.jct.2011.08.011 CrossRefGoogle Scholar
  23. 23.
    Linstrom P.J., Mallard W., NIST Chemistry Webbook; NIST standard reference database No. 69, National Institute of Standards and Technology, Gaithersburg MD, (2018)Google Scholar
  24. 24.
    Najafloo, A., Zoghi, A.T., Feyzi, F.: Measuring solubility of carbon dioxide in aqueous blends of N-methyldiethanolamine and 2-((2-aminoethyl)amino)ethanol at low CO2 loadings and modelling by electrolyte SAFT-HR EoS. J. Chem. Thermodyn. 82, 143–155 (2015).  https://doi.org/10.1016/j.jct.2014.11.006 CrossRefGoogle Scholar
  25. 25.
    Al-Ghawas, H.A., Hagewiesche, D.P., Ruiz-Ibanez, G., Sandall, O.C.: Physicochemical properties important for carbon dioxide absorption in aqueous methyldiethanolamine. J. Chem. Eng. Data 34, 385–391 (1989).  https://doi.org/10.1021/je00058a004 CrossRefGoogle Scholar
  26. 26.
    Sidi-Boumedine, R., Horstmann, S., Fischer, K., Provost, E., Furst, W., Gmehling, J.: Experimental determination of carbon dioxide solubility data in aqueous alkanolamine solutions. Fluid Phase Equilib. 218, 85–94 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ali Rahimi
    • 1
  • Ali T. Zoghi
    • 2
  • Farzaneh Feyzi
    • 1
    Email author
  • Amir Hossein Jalili
    • 2
  1. 1.Thermodynamics Research Laboratory, School of Chemical EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Gas Refining Technology Group, Gas Research DivisionResearch Institute of Petroleum Industry (RIPI)TehranIran

Personalised recommendations