Journal of Solution Chemistry

, Volume 48, Issue 7, pp 1066–1078 | Cite as

Progress in Aqueous Solution Modelling: Better Data and Better Interfaces

  • Darren RowlandEmail author
  • Peter M. May


The Joint Expert Speciation System (JESS) is presently the world’s largest single source of thermodynamic information about aqueous electrolyte solutions. Comprehensive and up-to-date thermodynamic models undoubtedly require such large databases but size alone, without well-designed data structures and good data assessment procedures, is insufficient. Computer databases are not like tables in a book; they should be constantly evolving, easy to search and specifically designed for processing by large-scale, automated facilities, including tests for careless errors and internal consistency. The maxim ‘garbage in, garbage out’ is today even more relevant than ever: without expert analysis and critical judgement, limitless storage capacity and computational power are likely just to add confusion rather than achieve meaningful insights into chemical problems. Several examples are provided to demonstrate the application of new methodologies to problems of differing size and complexity including harmonization of aqueous reaction equilibrium constants for more than 50,000 chemical species, systematic critical assessment of the thermophysical properties of aqueous glycine and its solid–liquid equilibria over wide ranges of temperature and pressure, and development of standalone programs for users lacking training in chemical speciation problems. Extension of these methods to new applications is discussed.


Aqueous electrolyte Chemical speciation Physicochemical properties Solubility Thermodynamics Activity coefficients 


Supplementary material

10953_2019_871_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)


  1. 1.
    May, P.M., Murray, K.: JESS, a Joint Expert Speciation System—I. Raison d’Etre. Talanta 38, 1409–1417 (1991)CrossRefPubMedGoogle Scholar
  2. 2.
    May, P.M., Murray, K.: Database of chemical reactions designed to achieve thermodynamic consistency automatically. J. Chem. Eng. Data 46, 1035–1040 (2001)CrossRefGoogle Scholar
  3. 3.
    May, P.M., Rowland, D.: Thermodynamic modeling of aqueous electrolyte systems: current status. J. Chem. Eng. Data 62, 2481–2495 (2017)CrossRefGoogle Scholar
  4. 4.
    Linke, W.F.: Solubilities, Inorganic and Metal–Organic Compounds, Vol. 2. A Revision and Continuation of the Compilation Originated by Atherton Seidell, Ph.D. US National Institutes of Health. American Chemical Society (1965)Google Scholar
  5. 5.
    Lemire, R.J., Berner, U., Musikas, C., Palmer, D.A., Taylor, P., Tochiyama, O.: Chemical thermodynamics of iron, part 1, vol. 13a. OECD Publications, Paris (2013)Google Scholar
  6. 6.
  7. 7.
  8. 8.
    Dortmund Data Bank.
  9. 9.
    Thermodynamic Reference Database (Thereda).
  10. 10.
    DePriester, C.L.: Light-hydrocarbon vapor–liquid distribution coefficients–pressure–temperature–composition charts and pressure–temperature nomographs. Chem. Eng. Prog. Symp. Ser. 49, 1–43 (1953)Google Scholar
  11. 11.
    Marshall, R.W., Robertson, W.G.: Nomograms for the estimation of the saturation of urine with calcium oxalate, calcium phosphate, magnesium ammonium phosphate, uric acid, sodium acid urate, ammonium acid urate and cystine. Clin. Chim. Acta 72, 253–260 (1976)CrossRefPubMedGoogle Scholar
  12. 12.
    Chirico, R.D., Frenkel, M., Magee, J.W., Diky, V., Muzny, C.D., Kazakov, A.F., Kroenlein, K., Abdulagatov, I.M., Hardin, G.R., Acree, W.E., Brenneke, J.F., Brown, P.L., Cummings, P.T., De Loos, T.W., Friend, D.G., Goodwin, A.R.H., Hansen, L.D., Haynes, W.M., Koga, N., Mandelis, A., Marsh, K.N., Mathias, P.M., McCabe, C., O’Connell, J.P., Padua, A.A.H., Rives, V., Schick, C., Trusler, J.P.M., Vyazovkin, S., Weir, R.D., Wu, J.: Improvement of quality in publication of experimental thermophysical property data: challenges, assessment tools, global implementation, and online support. J. Chem. Eng. Data 58, 2699–2716 (2013)CrossRefGoogle Scholar
  13. 13.
    Rowland, D., May, P.M.: Comment on “Volumetric properties of aqueous solution of lithium tetraborate from 283.15 to 363.15 K at 101.325 kPa” [J. Chem. Thermodyn. 120 (2018) 151–156] and its Corrigendum [J. Chem. Thermodyn. 123 (2018) 195–197]. J Chem Thermodyn. 128, 195–197 (2019)Google Scholar
  14. 14.
    Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS tables of chemical thermodynamic properties—selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11(Suppl), 2 (1982)Google Scholar
  15. 15.
    Gamsjäger, H., Gajda, T., Saxena, S.K., Sangster, J., Voigt, W.: OECD Chemical Thermodynamics series. Chemical thermodynamics of tin, vol. 12. Elsevier, Amsterdam (2012)Google Scholar
  16. 16.
    May, P.M., Batka, D., Hefter, G., Königsberger, E., Rowland, D.: Goodbye to S2− in aqueous solution. Chem. Commun. (London) 54, 1980–1983 (2018)CrossRefGoogle Scholar
  17. 17.
    May, P.M.: JESS at thirty: strengths, weaknesses and future needs in the modelling of chemical speciation. Appl. Geochem. 55, 3–16 (2015)CrossRefGoogle Scholar
  18. 18.
    May, P.M., Murray, K.: JESS, a Joint Expert Speciation System—II. The thermodynamic database. Talanta 38, 1419–1426 (1991)CrossRefPubMedGoogle Scholar
  19. 19.
    Smith, R.M., Martell, A.E., Motekaitis, R.J.: NIST Critical Stability Constants of Metal Complexes Database. Version 5.0. US Dept. Commerce, Gaithersburg, MD, USA (1998)Google Scholar
  20. 20.
    May, P.M.: A simple, general and robust function for equilibria in aqueous electrolyte solutions to high ionic strength and temperature. J. Chem. Soc. Chem. Commun. 14, 1265–1266 (2000)CrossRefGoogle Scholar
  21. 21.
    May, P.M., Rowland, D.: JESS, a Joint Expert Speciation System—VI: thermodynamically-consistent standard Gibbs energies of reaction for aqueous solutions. New J. Chem. 42, 7617–7629 (2018)CrossRefGoogle Scholar
  22. 22.
    Rowland, D., May, P.M.: A Pitzer-based characterization of aqueous magnesium chloride, calcium chloride and potassium iodide solution densities to high temperature and pressure. Fluid Phase Equilib. 338, 54–62 (2013)CrossRefGoogle Scholar
  23. 23.
    Rowland, D.: Thermodynamically-robust Pitzer equations for volumetric properties of electrolyte solutions. Talanta 144, 90–92 (2015)CrossRefPubMedGoogle Scholar
  24. 24.
    May, P.M., Rowland, D., Hefter, G., Königsberger, E.: A generic and updatable Pitzer characterization of aqueous binary electrolyte solutions at 1 bar and 25 °C. J. Chem. Eng. Data 56, 5066–5077 (2011)CrossRefGoogle Scholar
  25. 25.
    Rowland, D., May, P.M.: Thermodynamics of strong aqueous electrolyte solutions at t = 25 °C described by the Hückel equations. J. Chem. Eng. Data 59, 2030–2039 (2014)CrossRefGoogle Scholar
  26. 26.
    Rowland, D., May, P.M.: An investigation of Zdanovskii’s rule for predicting the water activity of multicomponent aqueous strong electrolyte solutions. J. Chem. Eng. Data 57, 2589–2602 (2012)CrossRefGoogle Scholar
  27. 27.
    Rowland, D., May, P.M.: An investigation of Harned’s rule for predicting the activity coefficients of strong aqueous electrolyte solution mixtures at 25 °C. J. Chem. Eng. Data 62, 310–327 (2017)CrossRefGoogle Scholar
  28. 28.
    Rowland, D., May, P.M.: A comparative investigation of mixing rules for property prediction in multicomponent electrolyte solutions. J. Solution Chem. 47, 107–126 (2018)CrossRefGoogle Scholar
  29. 29.
    Steiger, M., Voigt, W.: Solid–liquid metastable equilibria for solar evaporation of brines and solubility determination: a critical discussion. J. Solution Chem. (2018). CrossRefGoogle Scholar
  30. 30.
    Rowland, D.: Thermodynamic properties of the glycine + H2O system. J. Phys. Chem. Ref. Data 47, 023104 (2018)CrossRefGoogle Scholar
  31. 31.
    Rowland, D., May, P.M.: Comparison of the Pitzer and Hückel equation frameworks for activity coefficients, osmotic coefficients, and apparent molar relative enthalpies, heat capacities, and volumes of binary aqueous strong electrolyte solutions at 25 °C. J. Chem. Eng. Data 60, 2090–2097 (2015)CrossRefGoogle Scholar
  32. 32.
    May, P.M., Rowland, D., Königsberger, E., Hefter, G.: JESS, a Joint Expert Speciation System—IV: a large database of aqueous solution physicochemical properties with an automatic means of achieving thermodynamic consistency. Talanta 81, 142–148 (2010)CrossRefPubMedGoogle Scholar
  33. 33.
    Oakes, C.S., Simonson, J.M., Bodnar, R.J.: Apparent molar volumes of CaCl2(aq) to 250 °C, 400 bars and from molalities of 0.242 to 6.150. J. Solution Chem. 24, 897–916 (1995)CrossRefGoogle Scholar
  34. 34.
    Safarov, J.T., Najafov, G.N., Shahverdiyev, A.N., Hassel, E.: (p, ρ, T) and (p s, ρ s, T s) properties, and apparent molar volumes V ϕ of CaCl2(aq) at T = 298.15 to 398.15 K and at pressures up to p = 60 MPa. J. Mol. Liq. 116, 165–174 (2005)CrossRefGoogle Scholar
  35. 35.
    Beattie, J.A., Brooks, B.T., Gillespie, L.J., Scatchard, G., Schumb, W.C., Tefft, R.F.: Density (specific gravity) and thermal expansion (under atmospheric pressure) of aqueous solutions of inorganic substances and of strong electrolytes. In: Washburn, E.W. (ed.) International critical tables of numerical data, p. 51. McGraw–Hill, New York (1928)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fluid Science and Resources DivisionUniversity of Western AustraliaCrawleyAustralia
  2. 2.ChemistryMurdoch UniversityMurdochAustralia

Personalised recommendations