Advertisement

Phase Equilibrium and Solvation Effect of the Ternary Mixture Solvent System (LiCl + CH3OH + H2O) at 298.15, 308.15 and 318.15 K

  • Xiaoping YuEmail author
  • Huan Wang
  • Yafei Guo
  • Tianlong DengEmail author
Article
  • 12 Downloads

Abstract

The solubility and physicochemical properties, including density and refractive index in the ternary mixture solvent system (LiCl + CH3OH + H2O) at 298.15, 308.15 and 318.15 K were determined using the isothermal equilibrium method. Based on the experimental data, the phase diagrams and physicochemical properties versus composition diagrams at different temperatures were plotted and compared. It was found that the isothermal phase diagram at each temperature consists of one invariant point (LiCl + LiCl·H2O), two univariant curves and two crystalline regions corresponding to LiCl·H2O and LiCl, respectively. The densities and refractive indices in the ternary mixture solvent system at each temperature change regularly with the increase of LiCl concentration. The calculated densities and refractive indices at the three temperatures agree well with the experimental results. The salting-out rate of LiCl solution increases gradually with the increase of CH3OH concentration at each temperature. The results obtained in this work can be used to produce anhydrous LiCl at relatively low temperatures, even room temperature.

Keywords

Phase equilibrium Ternary mixture solvent system Lithium chloride Methanol 

Notes

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Nos. U1607129 and U1607123); the China Postdoctoral Science Foundation (Nos. 2016M592827 and 2016M592828); the Foundation of Tianjin Key Laboratory of Marine Resources and Chemistry (No. 201601), the Foundation of Tianjin Engineering Center of Marine Chemical Engineering & Technology (No. hyhg201701), and the Yangtze Scholars and Innovative Research Team of the Chinese University (No. IRT_17R81).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Xing, J., Xu, Z.Z., Deng, B.Y.: Enhanced oxidation resistance of polyphenylene sulfide composites based on montmorillonite modified by benzimidazolium salt. Polymers (2018).  https://doi.org/10.3390/polym10010083 Google Scholar
  2. 2.
    Wang, X.T., Li, Z.H., Zhang, M.L., Fan, T.T., Cheng, B.W.: Preparation of a polyphenylene sulfide membrane from a ternary polymer/solvent/non-solvent system by thermally induced phase separation. RSC Adv. 7, 10503–10516 (2017)CrossRefGoogle Scholar
  3. 3.
    Lian, D.D., Dai, J.M., Zhang, R.P., Niu, M., Huang, Y.L.: Enhancing the resistance against oxidation of polyphenylene sulphide fiber via incorporation of nano TiO2-SiO2 and its mechanistic analysis. Polym. Degrad. Stabil. 129, 77–86 (2016)CrossRefGoogle Scholar
  4. 4.
    Luo, D., Chen, M., Xu, J., Yin, X.Z., Wu, J., Chen, S.H., Wang, L.X., Wang, H.: Polyphenylene sulfide nonwoven-based composite separator with superior heat-resistance and flame retardancy for high power lithium ion battery. Compos. Sci. Technol. 157, 119–125 (2018)CrossRefGoogle Scholar
  5. 5.
    Shao, G.L., Xiao, J.F., Tian, Z.H., Huang, J.J., Yuan, S.G.: Preparation and characterization of polyphenylene sulfide-based chelating resin-functionalized 2-amino-1,3,4-thiadiazole for selective removal Hg(II) from aqueous solutions. Polym. Advan. Technol. 29, 1030–1038 (2018)CrossRefGoogle Scholar
  6. 6.
    Rahate, A.S., Nemade, K.R., Waghuley, S.A.: Polyphenylene sulfide (PPS): state of the art and applications. Rev. Chem. Eng. 29, 471–489 (2013)CrossRefGoogle Scholar
  7. 7.
    Wang, S.Q., Han, X.N., Jing, Y., Guo, Y.F., Zhao, M.L., Deng, T.L.: Phase equilibria in the ternary system (LiCl + Li2SO4 + H2O) at T = (288.15 and 308.15) K: experimental determination and model simulation. J. Chem. Eng. Data 61, 1155–1161 (2016)CrossRefGoogle Scholar
  8. 8.
    Li, L., Guo, Y.F., Zhang, S.S., Shen, M.M., Deng, T.L.: Phase equilibria in the aqueous ternary systems (LiCl + LiBO2 + H2O) and (Li2SO4 + LiBO2 + H2O) at 323.15 K and 0.1 MPa. Fluid Phase Equilib. 436, 13–19 (2017)CrossRefGoogle Scholar
  9. 9.
    Pelsh, A.D.: Handbook of Experimental Data on Solubility Multi-Component Salt-Water Systems, vol. 1. Three-component System. Leningrad Publishing, Leningrad Department, Berkeley (1973)Google Scholar
  10. 10.
    Wang, S.Q., Guo, Y.F., Liu, D.F., Deng, T.L.: Phase equilibria in system LiCl–NaCl–H2O at 308 and 348 K. Russ. J. Phys. Chem. A 90, 2532–2537 (2016)CrossRefGoogle Scholar
  11. 11.
    Broul, M., Hlavaty, K., Linek, J.: Liquid–vapour equilibrium in systems of electrolytic components: V. The system methanol + water + lithium chloride at 333 K and 9.32 kPa–63.58 kPa. Collect. Czech. Chem. Commun. 34, 3428–3435 (1969)CrossRefGoogle Scholar
  12. 12.
    Wei, D.Q., Lu, J.S., Zhu, J.J., Zhou, X.S.: Studies on salt effect of the isothermal vapour–liquid equilibrium-organic solvent–water–inorganic salt system at 298 K and 2.96 kPa–16.21 kPa. Acta Phys. Chim. Sin. 3, 520–523 (1987)Google Scholar
  13. 13.
    Fortin, T.J., Laesecke, A., Freund, M., Outcalt, S.: Advanced calibration, adjustment, and operation of a density and sound speed analyzer. J. Chem. Thermodyn. 57, 276–285 (2013)CrossRefGoogle Scholar
  14. 14.
    Deng, T.L., Li, D.C.: Solid–liquid metastable equilibria in the quaternary system (NaCl–KCl–CaCl2–H2O) at 288.15 K. Fluid Phase Equilib. 269, 98–103 (2008)CrossRefGoogle Scholar
  15. 15.
    Bu, B.H., Li, L., Zhang, N., Guo, Y.F., Wang, S.Q., Sun, L.Y., Deng, T.L.: Solid–liquid metastable phase equilibria for the ternary system (Li2SO4 + K2SO4 + H2O) at 288.15 and 323.15 K, p = 0.1 MPa. Fluid Phase Equilib. 402, 78–82 (2015)CrossRefGoogle Scholar
  16. 16.
    Deng, T.L., Zhou, H., Chen, X.: Salt–water system phase diagrams and applications. Chinese Chemical Industry Press, Beijing (2013)Google Scholar
  17. 17.
    Gomis, V., Ruiz, F., Boluda, N., Saquete, M.D.: Liquid–liquid–solid equilibria for ternary systems water + lithium chloride + pentanols. Fluid Phase Equilib. 215, 79–83 (2004)CrossRefGoogle Scholar
  18. 18.
    Gao, D.L., Guo, Y.F., Yu, X.P., Wang, S.Q., Deng, T.L.: Solubilities, densities, and refractive indices in the salt–water ternary system (LiCl + LiBO2 + H2O) at T = 288.15 K and p = 0.1 Mpa. J. Chem. Eng. Data 60, 2594–2599 (2015)CrossRefGoogle Scholar
  19. 19.
    Ouyang, H.T., Zeng, D.W., Zhou, H.Y., Han, H.J., Yao, Y.: Solubility of the ternary system LiCl + NH4Cl + H2O. J. Chem. Eng. Data 56, 1096–1104 (2011)CrossRefGoogle Scholar
  20. 20.
    Liu, Y.H., Guo, Y.F., Wang, X.K., Deng, T.L.: Phase equilibria in the ternary system (LiCl + Li2SO4 + H2O) at T = 308.15 K and p = 0.1 MPa: experimental data and predictions using the Pitzer model. Fluid Phase Equilib. 391, 85–89 (2015)CrossRefGoogle Scholar
  21. 21.
    Li, M., Constantinescu, D., Wang, L., Mohs, A., Gmehling, J.: Solubilities of NaCl, KCl, LiCl, and LiBr in methanol, ethanol, acetone, and mixed solvents and correlation using the LIQUAC model. Ind. Eng. Chem. Res. 49, 4981–4988 (2010)CrossRefGoogle Scholar
  22. 22.
    Song, P.S., Du, X.H.: Study on the metastable equilibria and physicochemical property of the quaternary (Li2B4O7 + Li2SO4 + LiCl + H2O) at 298.15 K. Chin. Sci. Bull. 31, 1338–1343 (1986)Google Scholar
  23. 23.
    Speight, J.G.: Lange’s Handbook of Chemistry, 16th edn. McGraw–Hill, New York (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials ScienceTianjin University of Science and TechnologyTianjinChina
  2. 2.College of Chemistry and Materials ScienceNorthwest UniversityXi’anChina

Personalised recommendations