Journal of Solution Chemistry

, Volume 48, Issue 4, pp 427–444 | Cite as

Solubility Measurements and the Dissolution Behavior of Malonic Acid in Binary Solvent Mixtures of (2-Propanol + Ethyl Acetate) by IKBI Calculations

  • Zijia Li
  • Long HeEmail author
  • Xiaoxi YuEmail author


The equilibrium solubilities of malonic acid in 2-propanol and ethyl acetate mono solvents, as well as in (2-propanol + ethyl acetate) binary solvent mixtures, were determined from 278.15 to 313.15 K. The obtained solubility data were correlated using thermodynamic models including the modified Apelblat equation, λh equation, NRTL model, GSM model and the modified Jouyban–Acree model. The dissolution mechanism of malonic acid in (2-propanol + ethyl acetate) solvent mixtures was interpreted theoretically. The inverse Kirkwood–Buff integrals method was applied and it was found that the value of δx1,3 is negative in high ethyl acetate fractions, but becomes positive at 2-propanol mole fractions greater than 0.60 at 298.15 K. In addition, molecular dynamic simulations were carried out to characterize the intermolecular interactions using the radial distribution function.


Malonic acid (2-Propanol + ethyl acetate) Dissolution behavior Inverse Kirkwood–Buff integrals (IKBI) method 



This work was financially supported by the National Natural Science Foundation of China (21706284), Shandong Scientific Foundation Project (Grant Number ZR2017BB085), Qingdao Postdoctoral Project (Grant Number 2016223) and National Science and Technology Major Project (2016ZX05053-008).

Supplementary material

10953_2019_853_MOESM1_ESM.docx (106 kb)
Supplementary material 1 (DOCX 106 kb)


  1. 1.
    Li, T., Lorenz, H., Seidel-Morgenstern, A.: Solubility study and thermal stability analysis of calcium propionate. Chem. Eng. Technol. 40, 1221–1230 (2017)CrossRefGoogle Scholar
  2. 2.
    Sangwal, K., Mielniczek-Brzóska, E., Barylska, S.: Solubility of ammonium oxalate in water–acetone mixtures and metastable zone width of their solutions. Chem. Eng. Res. Des. 92, 491–499 (2014)CrossRefGoogle Scholar
  3. 3.
    Jabbari, M., Khosravi, N., Feizabadi, M., Ajloo, D.: Solubility temperature and solvent dependence and preferential solvation of citrus flavonoid naringin in aqueous DMSO mixtures: an experimental and molecular dynamics simulation study. RSC Adv. 7, 14776–14789 (2017)CrossRefGoogle Scholar
  4. 4.
    Rodríguez, G.A., Delgado, D.R., Martinez, F.: Preferential solvation of indo methacin and naproxen in ethyl acetate + ethanol mixtures according to the IKBI method. Phys. Chem. Liq. 52, 533–545 (2014)CrossRefGoogle Scholar
  5. 5.
    Li, X., Ma, M., Du, C., Zhao, H.: Solubility of cetilistat in neat solvents and preferential solvation in (acetone, isopropanol or acetonitrile) + water co-solvent mixtures. J. Mol. Liq. 242, 618–624 (2017)CrossRefGoogle Scholar
  6. 6.
    Li, X., Chen, J., Chen, G., Zhao, H.: Solubility modelling, solution thermodynamics and preferential solvation of hymecromone in binary solvent mixtures of N,N-dimethylformamide + methanol, ethanol or n-propanol. RSC Adv. 7, 46378–46387 (2017)CrossRefGoogle Scholar
  7. 7.
    Li, X., Wen, X., Cong, Y., Zhao, H.: Solubility modelling, solution thermodynamics and preferential solvation for nitroxoline in solvent mixtures of ethyl acetate + (methanol, ethanol, n-propanol and isopropanol). J. Chem. Thermodyn. 113, 11–19 (2017)CrossRefGoogle Scholar
  8. 8.
    Caires, F.J., Lima, L.S., Carvalho, C.T., Giagio, R.J., Ionashiro, M.: Thermal behaviour of malonic acid, sodium malonate and its compounds with some bivalent transition metal ions. Thermochim. Acta 497, 35–40 (2010)CrossRefGoogle Scholar
  9. 9.
    Limwikrant, W., Nagai, A., Hagiwara, Y., Higashi, K., Yamamoto, K., Moribe, K.: Formation mechanism of a new carbamazepine/malonic acid cocrystal polymorph. Int. J. Pharmaceut. 431, 237–240 (2012)CrossRefGoogle Scholar
  10. 10.
    Shevchenko, A., Miroshnyk, I., Pietila, L., Haarala, J., Salmia, J., Sinervo, K., Mirza, S., Veen, B., Kolehmainen, E., Yliruusi, J.: Diversity in itraconazole cocrystals with aliphatic dicarboxylic acids of varying chain length. Cryst. Growth Des. 13, 4877–4884 (2013)CrossRefGoogle Scholar
  11. 11.
    Trask, A.V., Motherwell, W.D.S., Jones, W.: Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst. Growth Des. 5, 1013–1021 (2015)CrossRefGoogle Scholar
  12. 12.
    Wang, Y., Yin, Q., Sun, X., Bao, Y., Gong, J., Hou, B., Wang, Y., Zhang, M., Xie, C., Hao, H.: Measurement and correlation of solubility of thiourea in two solvent mixtures from T = (283.15 to 313.15) K. J. Chem. Thermodyn. 94, 110–118 (2016)CrossRefGoogle Scholar
  13. 13.
    Tang, W., Dai, H., Feng, Y., Wu, S., Bao, Y., Wang, J., Gong, J.: Solubility of tridecanedioic acid in pure solvent systems: an experimental and computational study. J. Chem. Thermodyn. 90, 28–38 (2015)CrossRefGoogle Scholar
  14. 14.
    Wang, G., Wang, Y., Zhang, J., Luan, Q., Ma, Y., Hao, H.: Modeling and simulation of thermodynamic properties of L-alanyl-l-glutamine in different solvents. Ind. Eng. Chem. Res. 53, 3385–3392 (2014)CrossRefGoogle Scholar
  15. 15.
    Apelblat, A., Manzurola, E.: Solubilities of L-aspartic, DL-aspartic, DL-glutamic, p-hydroxybenzoic, o-anisic, p-anisic, and itaconic acids in water from T = 278 K to T = 345 K. J. Chem. Thermodyn. 29, 1527–1533 (1997)CrossRefGoogle Scholar
  16. 16.
    Buchowski, H., Ksiazczak, A., Pietrzyk, S.: Solvent activity along a saturation line and solubility of hydrogen-bonding solids. J. Phys. Chem. 84, 975–979 (1980)CrossRefGoogle Scholar
  17. 17.
    Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)CrossRefGoogle Scholar
  18. 18.
    Sun, Z., Hao, H., Xie, C., Xu, Z., Yin, Q., Bao, Y., Hou, B., Wang, Y.: Thermodynamic properties of form A and Form B of florfenicol. Ind. Eng. Chem. Res. 53, 13506–13512 (2014)CrossRefGoogle Scholar
  19. 19.
    Barzegar-Jalali, M., Jouyban-Gharamaleki, A.: A general model from theoretical cosolvency models. Int. J. Pharm. 152, 247–250 (1997)CrossRefGoogle Scholar
  20. 20.
    Jouyban-Gharamaleki, A., Acree, W.: Comparison of models for describing multiple peaks in solubility profiles. Int. J. Pharm. 167, 177–182 (1998)CrossRefGoogle Scholar
  21. 21.
    Marcus, Y.: Solvent Mixtures: Properties and Selective Solvation. Marcel Dekker, New York (2002)Google Scholar
  22. 22.
    Marcus, Y.: On the preferential solvation of drugs and PAHs in binary solvent mixtures. J. Mol. Liq. 140, 61–67 (2008)CrossRefGoogle Scholar
  23. 23.
    Newman, K.E.: Kirkwood–Buff solution theory: derivation and applications. Chem. Soc. Rev. 23, 31–40 (1994)CrossRefGoogle Scholar
  24. 24.
    Ben-Naim, A.: Theory of preferential solvation of nonelectrolytes. Cell Biophys. 12, 255–269 (1988)CrossRefGoogle Scholar
  25. 25.
    Marcus, Y.: Preferential solvation of ibuprofen and naproxen in aqueous 1,2-propanediol. Acta Chim. Slov. 56, 40–44 (2009)Google Scholar
  26. 26.
    Martínez, A., Jouyban, F.: Preferential solvation of nifedipine in some aqueous co-solvent mixtures. Phys. Chem. Liq. 54, 563–573 (2016)CrossRefGoogle Scholar
  27. 27.
    Marrero, J., Gani, R.: Group-contribution based estimation of pure component properties. Fluid Phase Equilibr. 183–184, 183–208 (2001)CrossRefGoogle Scholar
  28. 28.
    Marcus, Y.: The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 22, 409–416 (1993)CrossRefGoogle Scholar
  29. 29.
    Zhu, P., Chen, Y., Zhang, M., Bao, Y., Xie, C., Hou, B., Gong, J., Chen, W.: Measurement and correlation of solubility and solution thermodynamics of 1,3-dimethylurea in different solvents from T = (288.15 to 328.15) K. J. Chem. Thermodyn. 97, 9–16 (2016)CrossRefGoogle Scholar
  30. 30.
    Ouyang, J., Wang, J., Hao, H., Huang, X., Gao, Y., Bao, Y., Wang, Y., Yin, Q.: Determination and correlation of solubility and solution thermodynamics of valnemulin hydrogen tartrate in different pure solvents. Fluid Phase Equilib. 372, 7–14 (2014)CrossRefGoogle Scholar
  31. 31.
    Zhou, Y., Hao, H., Yang, J., Zhu, P., Wang, T., Hou, B., Chuang, X., Wang, J.: Solid–liquid phase equilibrium and mixing properties of 2-cyano-40-methylbiphenyl in pure solvents. J. Chem. Thermodyn. 103, 134–141 (2016)CrossRefGoogle Scholar
  32. 32.
    Nagata, I., Yamada, T., Nakagawa, S.: Excess Gibbs free energies and heats of mixing for binary systems ethyl acetate with methanol, ethanol, 1-propanol, and 2-propanol. J. Chem. Eng. Data 20, 271–275 (1975)CrossRefGoogle Scholar
  33. 33.
    Marcus, Y.: The Properties of Solvents. Wiley, Chichester (2008)Google Scholar
  34. 34.
    Nikam, P.S., Mahale, T.R., Hasan, M.: Density and viscosity of binary mixtures of ethyl acetate with methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, 2-methylpropan-1-ol, and 2-methylpropan-2-ol at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 41, 1055–1058 (1996)CrossRefGoogle Scholar
  35. 35.
    Kamlet, M.J., Taft, R.W.: The solvatochromic comparison method. I. The beta-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 98, 377–383 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Petroleum Engineering Institute, Northwest Branch of SinopecUrumchiPeople’s Republic of China
  2. 2.College of Chemical EngineeringChina University of Petroleum (East China)QingdaoPeople’s Republic of China

Personalised recommendations