Advertisement

Journal of Solution Chemistry

, Volume 48, Issue 1, pp 61–81 | Cite as

Stoichiometric, Thermodynamic and Computational DFT Analysis of Charge Transfer Complex of 1-Benzoylpiperazine with 2, 3-Dichloro-5, 6-Dicyano-1, 4-benzoquinone

  • Venugopal Abbu
  • Venkatesh Nampally
  • Naveen Baindla
  • Parthasarathy TigullaEmail author
Article
  • 33 Downloads

Abstract

This research discusses the charge transfer (CT) complex of 1-benzoylpiperazine (1-BP) as a donor with the π-acceptor of 2, 3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) which has been studied spectrophotometrically in acetonitrile (ACN) at different temperatures. The 1:1 molecular composition of the CT complex was confirmed by applying Job’s continuous variation and photometric titration methods and the Benesi–Hildebrand equation is used to calculate the formation constant (KCT) and molar extinction coefficient (ε). The thermodynamic parameters standard enthalpy (ΔH°), standard entropy (ΔS°) and standard Gibbs energy (ΔG°) were calculated by using van’t Hoff equation. These results indicate that the CT complex formation is exothermic. The computational study of the CT complex, using density functional theory, supports the experimental work. The molecular geometry, molecular electrostatic potential maps, characterization of the frontier molecular orbital surfaces, Mulliken partial atomic charges and reactive parameters of the acceptor and donor are helpful in assigning the CT route. The charge transfer in the 1-BP–DDQ complex and its high stability are evidenced through both experimental and theoretical studies.

Keywords

Charge transfer complex 1-Benzoylpiperazine 2,3-Dichloro-5,6-dicyano-p-benzoquinone Thermodynamic parameters DFT studies 

Notes

Acknowledgements

The author, AV expresses his gratitude to the Head, Department of Chemistry, Osmania University, Hyderabad for their support in research work.

Supplementary material

10953_2019_847_MOESM1_ESM.docx (818 kb)
Supplementary material 1 (DOCX 817 kb)

References

  1. 1.
    Haga, N., Nakajima, H., Takayanagi, H., Tokumaru, K.: Photo induced electron transfer between acenaphthylene and tetracyanoethylene: effect of irradiation mode on reactivity of the charge-transfer complex and the resulted radical ion pair in solution and crystalline state. J. Org. Chem. 63, 5372–5384 (1998)CrossRefGoogle Scholar
  2. 2.
    Mulliken, R.S., Pearson, W.B.: Molecular complexes. A lecture and reprint volume. Wiley, New York (1969)Google Scholar
  3. 3.
    Foster, R.: Organic Charge-Transfer Complexes. Academic Press, London (1969)Google Scholar
  4. 4.
    Mulliken, R.S.: Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents. J. Am. Chem. Soc. 72, 600–608 (1950)CrossRefGoogle Scholar
  5. 5.
    Mulliken, R.S.: Molecular compounds and their spectra. III. The interaction of electron donors and acceptors. J. Phys. Chem. 56, 801–822 (1952)CrossRefGoogle Scholar
  6. 6.
    Refat, M.S., Adam, A.M.A., El-Sayed, M.Y.: Biomarkers charge-transfer complexes of melamine with quinol and picric acid: synthesis, spectroscopic, thermal, kinetic and biological studies. Arab. J. Chem. 10, S3482–S3492 (2017)CrossRefGoogle Scholar
  7. 7.
    Yakuphanoglu, F., Arslan, M.: The fundamental absorption edge and optical constants of some charge transfer compounds. Opt. Mater. 27, 29–37 (2004)CrossRefGoogle Scholar
  8. 8.
    Kisch, H.: Tailoring of solid state electrical conductivity and optical electron transfer activation on of dioxygen in solution through supramolecular charge-transfer interaction in ion pairs. Coord. Chem. Rev. 159, 385–396 (1997)CrossRefGoogle Scholar
  9. 9.
    Dabestani, R., Reszka, K.J., Sigman, M.E.: Surface catalyzed electron transfer from polycyclic aromatic hydrocarbons (PAH) to methyl viologen dication: evidence for ground-state charge transfer complex formation on silica gel. J. Photochem. Photobiol., A 117, 223 (1998)CrossRefGoogle Scholar
  10. 10.
    Muha, G.M.: On the electron donor and electron acceptor properties of the γ-alumina surface. J. Catal. 58, 470–477 (1979)CrossRefGoogle Scholar
  11. 11.
    Wang, X., Li, C.: Interfacial charge transfer in semiconductor-molecular photocatalyst systems for proton reduction. J. Photochem. Photobiol. C 33, 165–179 (2017)CrossRefGoogle Scholar
  12. 12.
    Takahashi, K., Horino, K., Komura, T., Murata, K.: Photovoltaic properties of porphyrin thin films mixed with o-chloranil. Bull. Chem. Soc. Jpn 66, 733–738 (1993)CrossRefGoogle Scholar
  13. 13.
    Eychmuller, A., Rogach, A.L.: Chemistry and photo physics of thiol-stabilized II–VI semiconductor nanocrystals. Pure Appl. Chem. 72, 179–188 (2000)CrossRefGoogle Scholar
  14. 14.
    Hoshyargar, F., Mullane, A.P.O.: Tetrathiafulvalene-7,7,8,8-tetracyanoquino-dimethane and tetrathiafulvalene-2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane organic charge-transfer complexes: reusable catalysts for electron-transfer reactions. Chem. Cat. Chem. 8, 1–6 (2016)Google Scholar
  15. 15.
    Gaballa, A.S., Amin, A.S.: Preparation, spectroscopic and antibacterial studies on charge-transfer complexes of 2-hydroxypyridine with picric acid and 7,7′,8,8′-tetracyano p-quinodimethane. Spectrochim. Acta A 145, 302–312 (2015)CrossRefGoogle Scholar
  16. 16.
    Slifkin, A.M.: Charge Transfer Interaction of Bio Molecules. Academic Press, New York (1971)Google Scholar
  17. 17.
    Ueno, Y., Sano, H., Okawara, M.: Synthesis and complex formation of diferrocenyltetrathiafulvalene. J. Chem. Soc. Chem. Commun. 1, 28–30 (1980)CrossRefGoogle Scholar
  18. 18.
    Shehab, O.R., Mansour, A.M.: Charge transfer complexes of 2-arylaminomethyl-1H benzimidazole with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone: experimental and DFT studies. J. Mol. Struct. 1047, 121–135 (2013)CrossRefGoogle Scholar
  19. 19.
    Mostafa, A., Bazzi, H.S.: Synthesis and spectroscopic studies of the charge transfer complexes of 2- and 3-aminopyridine. Spectrochim. Acta, Part A 74, 180–187 (2009)CrossRefGoogle Scholar
  20. 20.
    Saleh, G.A., Askal, H.F., Radwan, M.F., Omar, M.A.: Use of charge-transfer complexation in the spectrophotometric analysis of certain cephalosporins. Talanta 54, 1205–1215 (2001)CrossRefGoogle Scholar
  21. 21.
    Shehab, O.R., Mansour, A.M.: Sparfloxacin charge transfer complexes with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and tetracyanoquinodimethane: Molecular structures, spectral, and DFT studies. J. Mol. Struct. 1093, 186–194 (2015)CrossRefGoogle Scholar
  22. 22.
    Singh, N., Ahmad, A.: Spectrophotometric and spectroscopic studies of charge transfer complex of 1-naphthylamine as an electron donor with picric acid as an electron acceptor in different polar solvents. J. Mol. Struct. 977, 197–202 (2010)CrossRefGoogle Scholar
  23. 23.
    Semnani, A., Hamid Reza, P.: Spectrophotometric and electro chemical studies of the interaction of cryptand 222 with DDQ and I2 in ethanal solutions. Bull. Chem. Soc. Ethiop. 20, 183–192 (2006)CrossRefGoogle Scholar
  24. 24.
    Pandeeswaran, M., Elango, K.P.: Solvent effect on the charge transfer complex of oxatomide with 2,3-dichloro-5,6-dicyanobenzoquinone. Spectrochim. Acta A 65, 1148–1153 (2006)CrossRefGoogle Scholar
  25. 25.
    Shahada, L., Mostafa, A., Nour, E.-M., Bazzi, H.S.: Synthesis, spectroscopic, thermal and structural investigations of charge-transfer complexes of 4,4-trimethylene dipiperidine with chloranil, TBCHD, DDQ, TCNQ and iodine. J. Mol. Struct. 933, 1–7 (2009)CrossRefGoogle Scholar
  26. 26.
    Ganesh, K., Balraj, C., Sathesh Kumar, A.: Spectroscopic investigation on the mechanism of formation of molecular complexes of albendazole and trimethoprim with 2,3-dichloro 5,6-dicyano-1,4-benzoquinone. Spectrochim. Acta 92, 46–55 (2012)CrossRefGoogle Scholar
  27. 27.
    Li, R.T., Cao, S.L., Chen, H.C., Yang, J.Z., Cai, M.S.: Synthesis and pharmacological activities of 1,1-dialkyl-4(3-bromo propionyl) piperazinium bromides. Acta Pharm. Sin. 31, 757–760 (1996)Google Scholar
  28. 28.
    Wu, Y., Ma, L.X., Che, J., Sun, L.P., Song, M.X., Cui, X., Piao, H.R.: Synthesis and biological evaluation of [1,2,4]triazolo[3,4-a]phthalazine and tetrazolo[5,1-a]phthalazine derivatives bearing substituted benzylpiperazine moieties as positive inotropic agents. Chem. Biol. Drug Des. 81, 591–599 (2013)CrossRefGoogle Scholar
  29. 29.
    Guandalini, L., Martino, M.V., DiCesare, M.L., Bartolucci, G., Melani, F., Malik, R., Dei, S., Floriddia, E., Manetti, D., Orlandi, F., Teodori, E., Ghelardini, C., Romanelli, M.N.: Substituted piperazines as nootropic agents: 2- or 3-phenyl derivatives structurally related to the cognition-enhancer DM235. Bioorg. Med. Chem. 25, 1700–1704 (2015)CrossRefGoogle Scholar
  30. 30.
    Dhayanithi, V., Syed, S.S., Venkat, R.R., Kumaran, K., Jai Sankar, K.G.R., Suchetha, K.N., Pati, N.: Synthesis and evaluation of a series of 1-substituted tetrazole derivatives as antimicrobial agents. Org. Commun. 3, 45–56 (2010)Google Scholar
  31. 31.
    Shirish Kumar, K., Parthasarathy, T.: Synthesis, spectroscopic and computational studies of CT complexes of amino acids with iodine as σ acceptor. J. Solution Chem. 46, 1364–1403 (2017)CrossRefGoogle Scholar
  32. 32.
    Arunapriya, L., Naveen, B., Parthasarathy, T.: Synthesis, spectroscopic and computational studies of charge-transfer complexation between 4-aminoaniline and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. J. Solution Chem. 46, 2171–2190 (2017)CrossRefGoogle Scholar
  33. 33.
    Alghanmi, R.M., Habeeb, M.M.: Spectral and salvation effect studies on charge transfer complex of 2,6-diaminopyridine with chloranilic acid. J. Mol. Liq. 181, 20–28 (2013)CrossRefGoogle Scholar
  34. 34.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 ed. Gaussian, Inc.: Wallingford CT (2009)Google Scholar
  35. 35.
    Frisch, A., Nielson, A.B., Holder, A.J.: GAUSSVIEW User Manual. Gaussian Inc, Pittsburgh (2000)Google Scholar
  36. 36.
    Manoj Kumar, P., Naveen, B., Parthasarathy, T.: Spectrophotometric, thermodynamic and density functional studies of charge transfer complex between benzhydryl piperazine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. J. Solution Chem. 47, 975–992 (2018)CrossRefGoogle Scholar
  37. 37.
    Ibrahim, O.B., Al- Majthoub, M.M., Mohamed, M.A., Adam, A.M., Refat, M.S.: Quick and simple formation of charge transfer complexes of brain and nerves phenytoin drug with different π–acceptors: chemical and biological studies. Int. J. Electrochem. Sci. 10, 1065–1080 (2015)Google Scholar
  38. 38.
    Al-Attas, A.S., Al-Raimi, D.S., Habeeb, M.M.: Spectroscopic analysis, thermodynamic study and molecular modelling of charge transfer complexation between 2-amino-5,6-dimethyl-1,2,4-triazine with DDQ in acetonitrile. J. Mol. Liq. 198, 114–121 (2014)CrossRefGoogle Scholar
  39. 39.
    Parthasarathy, T., NageshwarRao, K., Sethuram, B., NavaneethRao, T.: Photopolymerisaion of acrylonitrile with the isopropanol–Ag(I) system as initiator. J. Macromol. Sci Chem. A 23, 955–961 (1986)CrossRefGoogle Scholar
  40. 40.
    Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)CrossRefGoogle Scholar
  41. 41.
    Ibrahim, A.A.: Spectrophotometric studies of charge transfer complex of 8-hydroxyquinoline with 1,4-benzoquinone. Afr. J. Pure Appl. Chem. 5, 507–514 (2011)Google Scholar
  42. 42.
    Adegoke, A.O.: Spectrophotometric and thermodynamic studies of the charge transfer complexation of nitroimidazoles with chloranilic acid following metal hydride reduction. Afr. J. Pure Appl. Chem. 5, 255–264 (2011)Google Scholar
  43. 43.
    Zulkarnain, I.M., Khan, A.A., Miyan, L., Ahmad, M., Azizc, N.: Synthesis of charge transfer complex of chloranilic acid as acceptor with p-nitroaniline as donor: crystallographic, UV-visible spectrophotometric and antimicrobial studies. J. Mol. Struct. 1141, 687–697 (2017)CrossRefGoogle Scholar
  44. 44.
    Adam, A.M.A., Salman, M., Sharshar, T., Refat, M.S.: Chemical and physical studies on the reaction mechanism of charge-transfer complexes between narcotic drugs and electronic acceptors. Int. J. Electrochem. Sci. 8, 1274–1294 (2013)Google Scholar
  45. 45.
    Briegleb, G., Czekalla, J.: Intensity of electron transition bands in electron donator–acceptor complexes. Z. Physik. Chem. (Frankfurt) 24, 37–54 (1960)CrossRefGoogle Scholar
  46. 46.
    Habeeb, M.M., Al-Attas, A.S., Al-Raimi, D.S.: Spectroscopic studies and molecular orbital calculations of charge transfer complexation between 3,5-dimethylpyrazole with DDQ in acetonitrile. Spectrochim. Acta A 142, 196–203 (2015)CrossRefGoogle Scholar
  47. 47.
    Naveen, B., Arunapriya, L., Parthasarathy, T.: Charge transfer interaction of 8-hydroxy quinoline with DDQ: Spectrophotometric, thermodynamic and molecular modeling studies. Indian J. Chem. Sect A 55, 1209–1215 (2016)Google Scholar
  48. 48.
    Al-Ahmary, K.M., Mekheimer, R.A., Al-Enezi, M.S., Hamada, N.M.M., Habeeb, M.M.: Synthesis, spectrophotometric characterization and DFT computational study of a novel quinoline derivative, 2-amino-4-(2,4,6-trinitrophenylamino)-quinoline-3-carbonitrile. J. Mol. Liq. 249, 501–510 (2018)CrossRefGoogle Scholar
  49. 49.
    Madhulata, S., Nitin, S., Satyen, S.: Investigation of ground state charge transfer complex between paracetamol and p-chloranil through DFT and UV–visible studies. J. Mol. Struct. 1021, 153–157 (2012)CrossRefGoogle Scholar
  50. 50.
    Sas, E.B., Cevik, M., Kurt, M.: Experimental and theoretical analysis of 2-amino 1-methyl benzimidazole molecule based on DFT. J. Mol. Struct. 1149, 882–892 (2017)CrossRefGoogle Scholar
  51. 51.
    Foresman, J.B., Frisch, A.E.: Exploring Chemistry with Electronic Structure Methods. Gaussian, Pittesburgh, PA (1996)Google Scholar
  52. 52.
    Chang, R.: Chemistry. McGraw–Hill, New York (2001)Google Scholar
  53. 53.
    Alghanmi, R.M., Soliman, S.M., Basha, M.T., Habeeb, M.M.: Electronic spectral studies and DFT computational analysis of hydrogen bonded charge transfer complexes between chloranilic acid and 2,5-dihydroxy-p-benzoquinone with 2-amino-4-methylbenzothiazole in methanol. J. Mol. Liq. 256, 433–444 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryOsmania UniversityHyderabadIndia

Personalised recommendations