Journal of Solution Chemistry

, Volume 48, Issue 1, pp 31–44 | Cite as

Reactivity Variation of Tetracyanoethylene and 4-Phenyl-1,2,4-Triazoline-3,5-Dione in Cycloaddition Reactions in Solutions

  • Vladimir D. KiselevEmail author
  • Dmitry A. Kornilov
  • Oleg V. Anikin
  • Alexey A. Shulyatiev
  • Alexander I. Konovalov


The reasons for the very high reactivity and variability of reactivity of two dienophiles, tetracyanoethylene (1) and 4-phenyl-1,2,4-triazoline-3,5-dione (2), in the Diels–Alder reactions were considered. The data on the rate of reactions with anthracene (3), benzanthracene (4) and dibenzanthracene (5) in 14 solvents over a range of temperatures and high pressures, data on the change in the enthalpy of solvation of reagents, transition state, and adducts in the forward and backward reactions, and the enthalpies of these reactions in solution were obtained. Strong π-acceptor dienophile 1 has sharply reduced reactivity in reactions in π-donor aromatic solvents. It was observed that the π-acceptor properties of dienophile 1 disappear upon passage to the transition state and adduct. Large solvent effects on the reaction rate can be predicted for all types of reactions involving tetracyanoethylene. Very high reactivity of dienophiles 1 and, especially, 2 can be useful to catch such carcinogenic impurities such as 3–5 and neutralize them by transformation into less dangerous adducts.


High pressure Diels–Alder reaction Kinetics Transition state Enthalpy 



We are grateful to Dr. Igor Sedov for carrying out some calorimetric measurements. This work was supported by the Russian Foundation for Basic Research (Projects Nos. 16-03-00071 and 18-33-00063), the Ministry of Education and Science of Russian Federation (Project No. 4.6223.2017/9.10), and the research grant of Kazan Federal University.


  1. 1.
    Fringuelli, F., Taticchi, A.: The Diels–Alder Reaction: Selected Practical Methods. Wiley, New York (2002)Google Scholar
  2. 2.
    Kobayashi, S., Jorgensen, K.A.: Cycloaddition Reaction in Organic Synthesis. Wiley, New York (2001)CrossRefGoogle Scholar
  3. 3.
    Kiselev, V.D., Konovalov, A.I.: Internal and external factors influencing the Diels–Alder reaction. J. Phys. Org. Chem. 22, 466–483 (2009)CrossRefGoogle Scholar
  4. 4.
    Sauer, J., Sustmann, R.: Mechanistic aspects of Diels–Alder reactions: a critical survey. Angew. Chem. Int. Ed. 19, 779–807 (1980)CrossRefGoogle Scholar
  5. 5.
    Woodward, R.B., Hoffmann, R.: The concervation of orbital symmetry. Angew. Chem. Int. Ed. 8, 781–932 (1969)CrossRefGoogle Scholar
  6. 6.
    Kiselev, V.D., Miller, J.G.: Experimental proof that the Diels–Alder reaction of tetracyanoethylene with 9,10-dimethylanthracene passes through formation of a complex between the reactants. J. Am. Chem. Soc. 97, 4036–4039 (1975)CrossRefGoogle Scholar
  7. 7.
    Narayan, S., Muldoon, J., Finn, M.G., Fokin, V.V., Kolb, H.C., Sharpless, K.B.: “On water”: unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed. 44, 3275–3279 (2005)CrossRefGoogle Scholar
  8. 8.
    Kiselev, V.D., Shakirova, I.I., Kornilov, D.A., Kashaeva, H.A., Potapova, L.N., Konovalov, A.I.: Homo-Diels–Alder reaction of a very inactive diene, bicyclo[2,2,1]hepta-2,5-diene, with the most active dienophile, 4-phenyl-1,2,4-triazoline-3,5-dione. Solvent, temperature, and high pressure influence on the reaction rate. J. Phys. Org. Chem. 26, 47–53 (2013)CrossRefGoogle Scholar
  9. 9.
    Houk, K.N., Munchausen, L.L.: Ionization potentials, electron affinities, and reactivities of cyanoalkenes and related electron-deficient alkenes. A frontier molecular orbital treatment of cyanoalkene reactivities in cycloaddition, electrophilic, nucleophilic, and radical reactions. J. Am. Chem. Soc. 98, 937–946 (1976)CrossRefGoogle Scholar
  10. 10.
    Rücker, C., Lang, D., Sauer, J., Friege, H., Sustmann, R.: Reaktivität substituierter 1,3-butadiene in Diels–Alder-Reaktionen. Chem. Ber. 113, 1663–1690 (1980)CrossRefGoogle Scholar
  11. 11.
    Cookson, R.C., Gilani, S.S.H., Stevens, I.D.R.: 4-Phenyl-1,2,4-triazolin-3,5-dione: a powerful dienophile. Tetrahedron Lett. 3, 615–618 (1962)CrossRefGoogle Scholar
  12. 12.
    Kiselev, V.D., Kornilov, D.A., Lekomtseva, I.I., Konovalov, A.I.: Reactivity of 4-phenyl-1,2,4-triazoline-3,5-dione and diethylazocarboxylate in [4 + 2]-cycloaddition and ene reactions: solvent, temperature, and high-pressure influence on the reaction rate. Int. J. Chem. Kinet. 47, 289–301 (2015)CrossRefGoogle Scholar
  13. 13.
    Sauer, J., Schröder, B.: Eine Studie der Diels–Alder-Reaktions, VIII. 4-Phenyl-1.2.4-triazolin-dion-(3.5) als Dienophil. Chem. Ber. 100, 678–684 (1967)CrossRefGoogle Scholar
  14. 14.
    Breton, G.W., Newton, K.A.: Further studies of the thermal and photochemical Diels–Alder reactions of N-methyl-1,2,4-triazoline-3,5-dione (MeTAD) with naphthalene and some substituted naphthalenes. J. Org. Chem. 65, 2863–2869 (2000)CrossRefGoogle Scholar
  15. 15.
    Riddick, J.A., Bunger, W.B., Sakano, T.K.: Organic Solvents, 4th edn. Wiley, New York (1986)Google Scholar
  16. 16.
    Kiselev, V.D., Kornilov, D.A., Anikin, O.V., Sedov, I.A., Konovalov, A.I.: Kinetics and thermochemistry of the unusual [2π + 2σ + 2σ]-cycloaddition of quadricyclane with some dienophiles. J. Phys. Org. Chem. 31, e3737 (2017). CrossRefGoogle Scholar
  17. 17.
    Kornilov, D.A., Kiselev, V.D.: New approach to determine the activation and reaction volumes of low polar molecular processes. Int. J. Chem. Kinet. 47, 389–394 (2015)CrossRefGoogle Scholar
  18. 18.
    Kiselev, V.D.: High-pressure influence on the rate of Diels–Alder cycloaddition reactions of maleic anhydride with some dienes. Int. J. Chem. Kinet. 45, 613–622 (2013)CrossRefGoogle Scholar
  19. 19.
    Kiselev, V.D., Bolotov, A.V., Satonin, A., Shakirova, I., Kashaeva, H.A., Konovalov, A.I.: Compressibility of liquids. Rule of noncrossing V-P curvatures. J. Phys. Chem. B 112, 6674–6682 (2008)CrossRefGoogle Scholar
  20. 20.
    Kiselev, V.D., Kashaeva, E.A., Luzanova, N.A., Konovalov, A.I.: Enthalpies of solution of lithium perchlorate and Reichardt’s dye in some organic solvents. Thermochim. Acta 303, 225–228 (1997)CrossRefGoogle Scholar
  21. 21.
    Gayer, K.H., Kothari, P.S.: Enthalpies of solution of potassium chloride and 2-amino-2-(hydroxymethyl) 1,3-propanediol. Thermochim. Acta 15, 301–305 (1976)CrossRefGoogle Scholar
  22. 22.
    Rogers, F.E.: Thermochemistry of the Diels–Alder reactions. II. Heat of addition of several dienes to tetracyanoethylene. J. Phys. Chem. 76, 106–109 (1972)CrossRefGoogle Scholar
  23. 23.
    Brown, P., Cookson, R.S.: Kinetics of addition of tetracyanoethylene to anthracene and bicyclo[2,2,1]heptadiene. Tetrahedron 21, 1977–1991 (1965)CrossRefGoogle Scholar
  24. 24.
    Kiselev, V.D., Konovalov, A.I., Asano, T., Iskhakova, G.G., Kashaeva, E.A., Shihab, M.S., Medvedeva, M.D.: Solvent effect on the volume of activation and volume of the Diels–Alder reaction. J. Phys. Org. Chem. 14, 636–643 (2001)CrossRefGoogle Scholar
  25. 25.
    Radomska, M., Radomski, R.: Phase diagrams in the binary systems of tetracyanoethylene with mesitylene, durene and pentamethylbenzene. J. Therm. Anal. 37, 693–704 (1991)CrossRefGoogle Scholar
  26. 26.
    Merrifield, R.E., Phillips, W.D.: Cyanocarbon chemistry. II. Spectroscopic studies of the molecular complexes of tetracyanoethylene. J. Am. Chem. Soc. 80, 2778–2782 (1958)CrossRefGoogle Scholar
  27. 27.
    Brown, R.D.: A theoretical treatment of the Diels–Alder reaction. Part I. Polycyclic aromatic hydrocarbons. J. Chem. Soc. (1950). Google Scholar
  28. 28.
    Kiselev, V.D.: Why can the activation volume of the cycloadduct decomposition in isopolar retro-Diels–Alder reactions be negative? Int. J. Chem. Kinet. 42, 117–125 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vladimir D. Kiselev
    • 1
    Email author
  • Dmitry A. Kornilov
    • 1
  • Oleg V. Anikin
    • 1
  • Alexey A. Shulyatiev
    • 1
  • Alexander I. Konovalov
    • 2
  1. 1.Laboratory of High Pressure Chemistry, Butlerov Institute of ChemistryKazan Federal UniversityKazanRussian Federation
  2. 2.Arbuzov Institute of Organic and Physical ChemistryKazan Scientific Center of Russian Academy of SciencesKazanRussian Federation

Personalised recommendations