Journal of Solution Chemistry

, Volume 48, Issue 1, pp 45–60 | Cite as

Studies of Volumetric and Viscosity Properties in Aqueous Solutions of Imidazolium Based Ionic Liquids at Different Temperatures and at Ambient Pressure

  • Pankaj D. Patil
  • Vasim R. Shaikh
  • Gaurav R. Gupta
  • Dilip G. Hundiwale
  • Kesharsingh J. PatilEmail author


The ionic liquids (ILs) 1,3-dimethyl imidazolium methyl sulfate [MIm][MeSO4] and 1-ethyl-3-methyl imidazolium ethyl sulfate [EMIm][EtSO4] have been synthesized and characterized by 1H NMR, 13C NMR, mass spectrometry, TGA and DSC methods. The densities and viscosities of binary aqueous solutions of [MIm][MeSO4] (0.02458 to 0.18922 mol·kg−1) and [EMIm][EtSO4] (0.01044 to 0.21261 mol·kg−1) are reported at (293.15, 298.15 and 303.15) K and at ambient pressure. Apparent and partial molar volumes of the studied ILs are calculated at the studied concentrations. The limiting partial molar volumes of the studied ILs were obtained using an appropriate extrapolation method. The limiting apparent molar expansivity values at 298.15 K are also obtained. The relative viscosity data are analyzed by applying the Jones–Dole equation and Vand’s equations. Positive viscosity A and B coefficients were observed for both studied ILs, while the D coefficients were also found to be necessary, showing specific behavior depending upon the solute–solute interactions. Calculations of the B coefficients for anions are reported. The application of Vand’s equation to the viscosity data enabled us to calculate the Einstein–Simha factor (ν) and particle interaction coefficient (\(Q\)) for the ion-pairs. The calculated ν values are found to be less than Einstein’s value of 2.5. The results are discussed from the points of view of the water structure making effect, solute–solvent hydrogen bond interaction and the presence of hydrophobic interaction.


Aqueous solutions of ILs Partial molar volumes Viscosity B and D coefficients Vand’s theory Particle interaction coefficients 



P. D. P. acknowledges University Grants Commission, New Delhi (India) for providing financial assistance through a UGC-BSR Fellowship for Science Meritorious Students.


  1. 1.
    Fernandez, A., Torrecilla, J.S., Garcia, J., Rodriguez, F.: Thermophysical properties of 1-ethyl-3-methylimidazolium ethylsulfate and 1-butyl-3-methylimidazolium methylsulfate ionic liquids. J. Chem. Eng. Data 52, 1979–1983 (2007)Google Scholar
  2. 2.
    Shaikh, V.R., Terdale, S.S., Gupta, G.R., Hundiwale, D.G., Patil, K.J.: Thermodynamic studies of ionic interactions in aqueous solutions of N-butyl-pyridinium bromide at 298.15 K. J. Mol. Liq. 186, 14–22 (2013)Google Scholar
  3. 3.
    Warke, I.J., Patil, K.J., Terdale, S.S.: Thermophysical properties of aqueous solutions of tetraalkylphosphonium based ionic liquids at different temperatures and atmospheric pressure. J. Chem. Thermodyn. 93, 101–114 (2016)Google Scholar
  4. 4.
    Patil, K.J., Dagade, D.H.: Volumetric and compressibility studies of aqueous triethyl-ammonium based protic ionic liquids at T = 298.15 K. J. Mol. Liq. 249, 272–280 (2018)Google Scholar
  5. 5.
    Kilaru, P., Baker, G.A., Scovazzo, P.: density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids: data and correlations. J. Chem. Eng. Data 52, 2306–2314 (2007)Google Scholar
  6. 6.
    Bester-Rogac, M., Hunger, J., Stoppa, A., Buchner, R.: 1-Ethyl-3-methylimidazolium ethylsulfate in water, acetonitrile, and dichloromethane: molar conductivities and association constants. J. Chem. Eng. Data 56, 1261–1267 (2011)Google Scholar
  7. 7.
    Gardas, R.L., Dagade, D.H., Terdale, S.S., Coutinho, J.A.P., Patil, K.J.: Acoustic and volumetric properties of aqueous solutions of imidazolium based ionic liquids at 298.15 K. J. Chem. Thermodyn. 40, 695–701 (2008)Google Scholar
  8. 8.
    Gardas, R.L., Dagade, D.H., Terdale, S.S., Coutinho, J.A.P., Patil, K.J.: Thermodynamic studies of ionic interactions in aqueous solutions of imidazolium-based ionic liquids [Emim][Br] and [Bmim][Cl]. J. Phys. Chem. B 112, 3380–3389 (2008)Google Scholar
  9. 9.
    Chen, T., Chidambaram, M., Liu, Z., Smit, B., Bell, A.T.: Viscosities of the mixtures of 1-ethyl-3-methylimidazolium chloride with water, acetonitrile and glucose: a molecular dynamics simulation and experimental study. J. Phys. Chem. B 114, 5790–5794 (2010)Google Scholar
  10. 10.
    Lal, B., Sahin, M., Ayranci, E.: Volumetric studies to examine the interactions of imidazolium based ionic liquids with water by means of density and speed of sound measurements. J. Chem. Thermodyn. 54, 142–147 (2012)Google Scholar
  11. 11.
    Dagade, D.H., Barge, S.S.: H-Bonding in water of hydration: NIR spectral studies of hydration behavior of 1-n-alkyl-3-metylimidazolium-based bromide and amino acid ionic liquids at 298.15 K. ChemistrySelect 2, 11703–11712 (2017)Google Scholar
  12. 12.
    Patil, P.P., Shaikh, V.R., Gupta, G.R., Patil, P.D., Borse, A.U., Patil, K.J.: Studies of viscosity coefficient and density properties of imidazolium based ionic liquids in aqueous solutions at different temperatures. ChemistrySelect 3, 5593–5599 (2018)Google Scholar
  13. 13.
    Tomas, R., Tot, A., Kuhar, J., Bester-Rogac, M.: Interaction in aqueous solutions of imidazolium chloride ionic liquids [Cnmim][Cl]) (n = 0, 1, 2, 4, 6, 8) from volumetric properties, viscosity B-coefficients and molecular dynamics simulations. J. Mol. Liq. 254, 267–271 (2018)Google Scholar
  14. 14.
    Gomez, E., Gonzalez, B., Calvar, N., Tojo, E., Dominguez, A.: Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. J. Chem. Eng. Data 51, 2096–2102 (2006)Google Scholar
  15. 15.
    Stokes, S., Mills, R.: Viscosity of electrolytes and relates properties. International Encyclopedia of Physical Chemistry and Chemical Physics. Pergamon Press, New York (1965)Google Scholar
  16. 16.
    Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)Google Scholar
  17. 17.
    Vand, V.: Viscosity of solutions and suspensions. I, Theory 1. J. Phys. Chem. 52, 277–299 (1929)Google Scholar
  18. 18.
    Huggins, M.L.: The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J. Am. Chem. Soc. 64, 2716–2718 (1942)Google Scholar
  19. 19.
    Marcus, Y.: Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109, 1346–1370 (2009)Google Scholar
  20. 20.
    Jenkins, H.D., Marcus, Y.: Viscosity B coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995)Google Scholar
  21. 21.
    Einstein, A.: Eine neue Bestimmung derXolehW-diamensionen; von. Ann. Phys. 324, 289–306 (1906)Google Scholar
  22. 22.
    Einstein, A.: Berichiigung xu meiner Arbeit: Eine neue Bestimmung der Molekul-diamensionen. Ann. Phys. 339, 591–592 (1911)Google Scholar
  23. 23.
    Simha, R.: The influence of Brownian movement on the viscosity of aqueous solutions. J. Phys. Chem. 44, 25–34 (1940)Google Scholar
  24. 24.
    Herskovits, T.T., Kelly, T.M.: Viscosity studies of alcohols, ureas and amides. J. Phys. Chem. 77, 381–388 (1973)Google Scholar
  25. 25.
    Thomas, D.G.: Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. J. Colloid. Sci. 20, 267–277 (1965)Google Scholar
  26. 26.
    Holbrey, J.D., Reichert, W.M., Swatloski, R.P., Broker, G.A., Pitner, W.R., Seddon, K.R., Rogers, R.D.: Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem. 4, 407–413 (2002)Google Scholar
  27. 27.
    Desnoyers, J.E., Perron, G.: The viscosity of aqueous solutions of alkali and tetra-alkylammonium halides at 25 °C. J. Solution Chem. 1, 199–212 (1972)Google Scholar
  28. 28.
    Kaminsky, M.: Experimentelle Untersuchungenüber die konzentrations- und temperaturabhängigkeit der zähigkeit wäßriger lösungen starker elektrolyte. Z. Phys. Chem. 5, 154–191 (1955)Google Scholar
  29. 29.
    Shaikh, V.R., Dagade, D.H., Hundiwale, D.G., Patil, K.J.: Volumetric studies of aqueous solutions of local anesthetical drug compounds [hydrochlorides of procaine (PC HCl), lidocaine (LC HCl) and tetracaine (TC HCl)] at 298.15 K. J. Mol. Liq. 164, 239–242 (2011)Google Scholar
  30. 30.
    Patil, R.S., Shaikh, V.R., Patil, P.D., Borse, A.U., Patil, K.J.: Volumetric properties of alkyltrimethyl ammonium bromides in aqueous solutions. J. Chem. Eng. Data 61, 195–206 (2016)Google Scholar
  31. 31.
    Conway, B.E., Barradas, R.G. (eds.): Chemical Physics of Ionic Solutions. Wiley, New York (1965)Google Scholar
  32. 32.
    Kay, R.L., Vituccio, T., Zawoyski, C., Evans, D.F.: Viscosity B coefficients for the tetraalkylammonium halides. J. Phys. Chem. 70, 2336–2341 (1966)Google Scholar
  33. 33.
    Dagade, D.H., Pawar, R., Patil, K.J.: Viscosity behavior of 18-crown-6 in aqueous and carbon tetrachloride solutions at different temperatures and at ambient pressure. J. Chem. Eng. Data 49, 341–346 (2004)Google Scholar
  34. 34.
    Edward, J.T.: Molecular volumes and the Stokes–Einstein equation. J. Chem. Educ. 47, 261–270 (1970)Google Scholar
  35. 35.
    Patil, P.D., Shaikh, V.R., Gupta, G.R., Borse, A.U., Hundiwale, D.G., Patil, K.J.: Studies of viscosity coefficient and expansivity properties of aqueous solutions of ethylene glycol and polyethylene glycols at 293.15, 298.15 and 303.15 K and at ambient pressure. J. Solution Chem. 45, 947–969 (2016)Google Scholar
  36. 36.
    Wen, W.Y., Saito, S.: Apparent and partial molal volumes of five symmetrical tetraalkylammonium bromides in aqueous solutions. J. Phys. Chem. 68, 2639–2644 (1964)Google Scholar
  37. 37.
    Franks, F., Ives, D.J.G.: The structural properties of alcohol–water mixtures. Q. Rev. 20, 1–44 (1966)Google Scholar
  38. 38.
    Tomar, P.A., Shaikh, V.R., Patil, K.J.: Tetraalkylammonium bromide–water mixtures revisited: isothermal compressibility and internal pressure variation in limiting concentration range at 298.15 K. J. Chem. Thermodyn. 126, 119–125 (2018)Google Scholar
  39. 39.
    Falkenhagen, H., Dole, M.: Viscosity of electrolyte solutions and its significance to the Debye theory. Z. Phys. 30, 611–616 (1929)Google Scholar
  40. 40.
    Falkenhagen, H., Vernon, E.L.: LXII. The viscosity of strong electrolyte solutions according to electrostatic theory. Philos. Mag. 14, 537–565 (1932)Google Scholar
  41. 41.
    Kaulgud, M.V., Patil, K.J.: Volumetric and isentropic compressibility behavior of aqueous amine solutions. I. J. Phys. Chem. 78, 714–717 (1974)Google Scholar
  42. 42.
    Kozak, J.J., Knight, W.S., Kauzmann, W.: Solute–solute interactions in aqueous solutions. J. Chem. Phys. 48, 675–690 (1968)Google Scholar
  43. 43.
    Tamaki, K., Ohara, Y., Isomura, Y.: Viscosity B coefficients for some alkyl sulphates in aqueous solutions. Bull. Chem. Soc. Jpn. 46, 1551–1552 (1973)Google Scholar
  44. 44.
    Gurney, R.W.: Ionic Processes in Solutions. McGraw Hill, New York (1954)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Pankaj D. Patil
    • 1
  • Vasim R. Shaikh
    • 1
  • Gaurav R. Gupta
    • 2
  • Dilip G. Hundiwale
    • 1
  • Kesharsingh J. Patil
    • 1
    Email author
  1. 1.School of Chemical SciencesNorth Maharashtra UniversityJalgaonIndia
  2. 2.Institute of Chemical TechnologyMumbaiIndia

Personalised recommendations