Advertisement

Journal of Solution Chemistry

, Volume 47, Issue 12, pp 2082–2093 | Cite as

Synthesis, Micellar and Surface Properties of Cationic Trisiloxane Surfactants with Different Siloxane Hydrophobic Groups

  • Jinglin TanEmail author
  • Miaomiao Lin
  • Zhigang Ye
Article
  • 78 Downloads

Abstract

Three cationic trisiloxane surfactants, 1-methyl-1-[bis(trimethylsiloxy)methyl]silyl-propylpyrrolidinium chloride (Si3pyCl), 1-methyl-1-[bis(triethylsiloxy)methyl]silyl-propylpyrrolidinium chloride (Et-Si3pyCl), and 1-methyl-1-[bis(vinyldimethylsiloxy)methyl]silylpropylpyrrolidinium chloride (Vi-Si3pyCl) were synthesized. The aggregation behavior of the trisiloxane surfactants with different siloxane hydrophobic groups in aqueous solution was investigated by surface tension and electrical conductivity measurements. The structures of hydrophobic groups of the trisiloxane surfactants can obviously influence their surface activities and thermodynamics. All the three cationic trisiloxane surfactants have excellent surface activity. Owing to the steric hindrance of hydrophobic groups, the CMC values increase following the order Et-Si3PyCl < Vi-Si3PyCl < Si3PyCl. The \(\Delta G_{\text{m}}^{\text{o}}\) values increase in the order Et-Si3PyCl > Vi-Si3PyCl > Si3PyCl, attributed to the decrease in the hydrophobic effect. The micellization processes of these surfactants are entropy-driven.

Keywords

Trisiloxane surfactants Steric hindrance Surface activity 

Notes

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21563016).

Supplementary material

10953_2018_826_MOESM1_ESM.docx (63 kb)
Supplementary material 1 (DOCX 62 kb)

References

  1. 1.
    Hill, R.M.: Silicone Surfactants. Marcel Dekker, New York (1999)Google Scholar
  2. 2.
    Hill, R.M.: Silicone surfactants—New development. Curr. Opin. Colloid Interface Sci. 7, 255–261 (2002)CrossRefGoogle Scholar
  3. 3.
    Peter, J.G.: Organosilicon surfactants as adjuvants for agrochemicals. Pestic. Sci. 38, 103–122 (1993)CrossRefGoogle Scholar
  4. 4.
    Churaev, N.V., Esipova, N.E., Hill, R.M., Sobolev, V.D., Starov, V.M., Zorin, Z.M.: The superspreading effect of trisiloxane surfactant solutions. Langmuir 17, 1338–1348 (2001)CrossRefGoogle Scholar
  5. 5.
    Hill, R.M., Svitova, T., Smirnova, Y., Stuermer, A.: Wetting and interfacial transitions in dilute solutions of trisiloxane surfactants. Langmuir 14, 5023–5031 (1998)CrossRefGoogle Scholar
  6. 6.
    Harald, W., Knudsen, K.D.: Microstructures in aqueous solutions of a polyoxyethylene trisiloxane surfactant and a cosurfactant studied by SANS and NMR self-diffusion. Langmuir 24, 10637–10645 (2008)CrossRefGoogle Scholar
  7. 7.
    Bonnington, L., Henderson, S.W., Zabkiewicz, J.A.: Characterization of synthetic and commercial trisiloxane surfactant materials. Appl. Organomet. Chem. 18, 28–38 (2004)CrossRefGoogle Scholar
  8. 8.
    Du, Z.P., Li, E., Cao, Y., Li, X., Wang, G.: Synthesis of trisiloxane-tailed surface active ionic liquids and their aggregation behavior in aqueous solution. Colloids Surf. A 441, 744–751 (2014)CrossRefGoogle Scholar
  9. 9.
    Li, P., Du, Z.P., Ma, X.Y., Wang, G.Y., Li, G.J.: Synthesis, adsorption and aggregation properties of trisiloxane room-temperature ionic liquids. J. Mol. Liq. 192, 38–43 (2014)CrossRefGoogle Scholar
  10. 10.
    Qin, J.Q., Du, Z.P., Ma, X.Y., Zhu, Y.Y., Wang, G.Y.: Effect of siloxane backbone length on butynediol-ethoxylate based polysiloxanes. J. Mol. Liq. 214, 54–58 (2016)CrossRefGoogle Scholar
  11. 11.
    Wang, G.Y., Li, X., Du, Z.P., Li, E.Z., Li, P.: Butynediol-ethoxylate based trisiloxane: structural characterization and physico-chemical properties in water. J. Mol. Liq. 197, 197–203 (2014)CrossRefGoogle Scholar
  12. 12.
    Sakai, K., Tamura, M., Umezawa, S., Takamatsu, Y., Torigoe, K., Yoshimura, T., Esumi, K., Sakai, H.: Adsorption characteristics of sugar-based monomeric and gemini surfactants at the silica/aqueous solution interface. Colloids Surf. A 328, 100–106 (2008)CrossRefGoogle Scholar
  13. 13.
    EL-Sukkary, M., Ismail, D., Rayes, S.E., Saad, M.: Synthesis, characterization and surface properties of amino-glycopolysiloxane. J. Ind. Eng. Chem. 20, 3342–3348 (2014)CrossRefGoogle Scholar
  14. 14.
    Zhao, X.H., Liang, W.P., An, D., Ye, Z.W.: Synthesis and properties of tetrasiloxane Gemini imidazolium surfactants. Colloid Polym. Sci. 294, 491–500 (2016)CrossRefGoogle Scholar
  15. 15.
    Tan, J.L., Ma, D.P., Feng, S.Y., Zhang, C.Q.: Effect of headgroups on the aggregation behavior of cationic silicone surfactants in aqueous solution. Colloids Surf. A 417, 146–153 (2013)CrossRefGoogle Scholar
  16. 16.
    Tan, J.L., Zhao, P.J., Ma, D.P., Feng, S.Y., Zhang, C.Q.: Effect of hydrophobic chains on the aggregation behavior of cationic silicone surfactants in aqueous solution. Colloid Polym. Sci. 291, 1487–1494 (2013)CrossRefGoogle Scholar
  17. 17.
    Tan, J.L., Feng, S.Y.: Effect of counterions on micellization of pyrrolidinium based silicone ionic liquids in aqueous solutions. J. Chem. Eng. Data 59, 1830–1834 (2014)CrossRefGoogle Scholar
  18. 18.
    Fang, L.Y., Tan, J.L., Zheng, Y., Li, H.N., Li, C.W., Feng, S.Y.: Effect of organic salts on the aggregation behavior of tri-(trimethylsiloxy)silylpropylpyridinium chloride in aqueous solution. Colloids Surf. A 509, 48–55 (2016)CrossRefGoogle Scholar
  19. 19.
    Fang, L.Y., Tan, J.L., Zheng, Y., Yang, G., Yu, J.T., Feng, S.Y.: Synthesis, aggregation behavior of novel cationic silicone surfactants in aqueous solution and their application in metal extraction. J. Mol. Liq. 231, 134–141 (2017)CrossRefGoogle Scholar
  20. 20.
    Czajka, A., Hazell, G., Eastoe, J.: Surfactants at the design limit. Langmuir 31, 8205–8217 (2015)CrossRefGoogle Scholar
  21. 21.
    Zhang, S.H., Yan, H., Zhao, M.W., Zheng, L.Q.: Aggregation behavior of gemini pyrrolidine-based ionic liquids 1,1′-(butane-1,4-diyl)bis(1-alkylpyrrolidinium) bromide ([Cnpy-4-Cnpy][Br 2]) in aqueous solution. J. Colloid Interf. Sci. 372, 52–57 (2012)CrossRefGoogle Scholar
  22. 22.
    Brown, P., Butts, C., Dyer, R., Eastoe, J., Grill, I., Guittard, F., Rogers, S.: Anionic surfactants and surfactant ionic liquids with quaternary ammonium counterions. Langmuir 27, 4563–4571 (2011)CrossRefGoogle Scholar
  23. 23.
    Dong, B., Zhao, X.Y., Zheng, L.Q., Inoue, T.: Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: micellization and characterization of micelle microenvironment. Colloids Surf. A 317, 666–672 (2008)CrossRefGoogle Scholar
  24. 24.
    Mata, J., Varade, D., Bahadur, P.: Aggregation behavior of quaternary salt based cationic surfactants. Thermochim. Acta 428, 147–155 (2005)CrossRefGoogle Scholar
  25. 25.
    Jaycock, M.J., Parfitt, G.D.: Chemistry of Interfaces. Wiley, New York (1981)Google Scholar
  26. 26.
    Rosen, M.J.: Surfactants and Interfacial Phenomena. Wiley, New York (1989)Google Scholar
  27. 27.
    Rao, K.S., Singh, T., Trivedi, T.J., Kumar, A.: Aggregation behavior of amino acid ionic liquid surfactants in aqueous media. J. Phys. Chem. B 115, 13847–13853 (2011)CrossRefGoogle Scholar
  28. 28.
    Shi, L.J., Li, N., Yan, H., Gao, Y.A., Zheng, L.Q.: Aggregation behavior of long-chain N-aryl imidazolium bromide in aqueous solution. Langmuir 27, 1618–1625 (2011)CrossRefGoogle Scholar
  29. 29.
    Zhang, Q., Gao, Z.N., Xu, F.S., Tai, X.J.: Effect of hydrocarbon structure of the headgroup on the thermodynamic properties of micellization of cationic gemini surfactants: an electrical conductivity study. J. Colloid Interface Sci. 371, 73–81 (2012)CrossRefGoogle Scholar
  30. 30.
    Tsubone, K., Arakawa, Y., Rosen, M.J.: Structural effects on surface and micellar properties of alkanediyl-α, ω-bis(sodium N-acyl-β-alaninate) gemini surfactants. J. Colloid Interface Sci. 262, 516–524 (2003)CrossRefGoogle Scholar
  31. 31.
    Olutas, E.B., Aamis, M.J.: Thermodynamic parameters of some partially fluorinated and hydrogenated amphiphilic enantiomers and their racemates in aqueous solution. Chem. Thermodyn. 47, 144–153 (2012)CrossRefGoogle Scholar
  32. 32.
    Zieliński, R.: Effect of temperature on micelle formation in aqueous NaBr solutions of octyltrimethylammonium bromide. J. Colloid Interface Sci. 235, 201–209 (2001)CrossRefGoogle Scholar
  33. 33.
    Wu, S.Y., Yan, Z.N., Wen, X.L., Xu, C.Y., Pan, Q.: Conductometric and fluorescence probe investigations of molecular interactions between dodecyltrimethylammonium bromide and dipeptides. Colloid Polym. Sci. 292, 2775–2783 (2014)CrossRefGoogle Scholar
  34. 34.
    Kiràly, Z., Dekàny, I.: A thermometric yitration study on the micelle formation of sodium decyl sulfate in water. J. Colloid Interface Sci. 242, 214–219 (2001)CrossRefGoogle Scholar
  35. 35.
    Šarac, B., Bešter-Rogac, M.: Temperature and salt-induced micellization of dodecyltrimethylammonium chloride in aqueous solution: a thermodynamic study. J. Colloid Interf. Sci. 338, 216–221 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangxi Province Engineering Research Center of Ecological Chemical Industry, School of Chemical and Environmental EngineeringJiujiang UniversityJiujiangChina

Personalised recommendations