Advertisement

Physico-chemical Properties of the Molten CuCl–CuCl2 System: Experiment, Thermodynamics and Molecular Dynamics Simulations

  • A. A. Raskovalov
  • P. Yu. Shevelin
Article
  • 8 Downloads

Abstract

The molten CuCl–CuCl2 system was studied by means of the maximum bubble pressure method, thermodynamics and molecular dynamics simulations at temperatures of 835, 866, 905 and 943 K. The equilibrium constant of CuCl2 decomposition has been determined with thermodynamic simulation. The density and molar volume of the CuCl–CuCl2 system were established as a function of composition. Some evidence of ideality of CuCl–CuCl2 solutions was observed. The molar volumes of pure liquid CuCl2 are equal to 44.64, 46.23, 46.55 and 46.81 cm3·mol−1 at 835, 866, 905 and 943 K, correspondingly. Radial distribution functions, coordination numbers, self-diffusion coefficients and trajectories of motion were obtained by molecular dynamics simulation. For this reason a new pair potential for Cu2+–Cl pair has been designed. The coordination number of Cu2+ by Cl is about 4. This value corresponds to literature data with regards to this coordination. The self-diffusion coefficients are close to diffusion coefficients measured in molten salts solutions.

Keywords

Copper chlorides Maximal bubble pressure method Thermodynamics simulation Molecular dynamics simulation Melts 

Notes

Acknowledgements

The reported study was funded by Russian Foundation for Basic Research (RFBR), according to the research Project No. 16-33-60095 mol_a_dk. The calculations were performed using “Uran” supercomputer of IMM UB RAS.

References

  1. 1.
    Anfinogenov, A.I., Martem’yanova, Z.S.: Spontaneous mass transfer and deposition of carbon and silicon on titanium in LiCl–Li ionic–electronic melts. J. Min. Metall. 39, 295–301 (2003)CrossRefGoogle Scholar
  2. 2.
    Anfinogenov, A.I., Chebykin, V.V., Chernov, Y.B.: Spontaneous electrochemical transport reactions in ionic and ionic–electronic salt melts: the production of diffusion coatings. Russ. J. Electrochem. 43, 968–976 (2007)CrossRefGoogle Scholar
  3. 3.
    Daněk, V., Ličko, T., Pánek, Z.: Conductivity of melts in the system CaO–FeO–Fe2O3–SiO2. Chem. Pap. 40, 215–223 (1986)Google Scholar
  4. 4.
    Bredig, M.A.: Molten Salt Chemistry. Interscience, New York (1964)Google Scholar
  5. 5.
    Heus, R.J., Egan, J.J.: Electronic conductivity in molten lithium chloride–potassium chloride eutectic. J. Phys. Chem. 77, 1989–1993 (1973)CrossRefGoogle Scholar
  6. 6.
    Egan, J.J., Freyland, W.: Thermodynamic properties of liquid non metallic Na–NaBr solutions. Ber. Bunsenges. Phys. Chem. 89, 381–384 (1985)CrossRefGoogle Scholar
  7. 7.
    Nattland, D., Heyer, H., Freyland, W.: Metal–nonmetal transition in liquid alkali metal–alkalihalide melts: electrical conductivity and optical reflectivity study. Z. Phys. Chem. N. F. 149, 1–15 (1986)CrossRefGoogle Scholar
  8. 8.
    Liu, J., Poignet, J.-C.: Electronic conductivity of salt-rich Li–LiCl melts. J. Appl. Electrochem. 22, 1110–1112 (1992)CrossRefGoogle Scholar
  9. 9.
    Nattland, D., Von Blanckenhagen, B., Juchem, R., Schellkes, E., Freyland, W.: Localized and mobile electrons in metal–molten-salt solutions. J. Phys. 8, 9309–9314 (1996)Google Scholar
  10. 10.
    Warren, W.W., Sotier, S., Brennert, G.F.: Resolution of the conductivity dilemma in liquid solutions of alkali metals in alkali halides. Phys. Rev. Lett. 50, 1505–1508 (1983)CrossRefGoogle Scholar
  11. 11.
    Budimirov, M.A., Red’kin, A.A., Hohlov, V.A., Batalov, N.N.: Fiziko-himicheskie issledovaniya rasplavlennich smesey (LiCl–KCl)evt–CuCl–CuCl2 (in Russian). Rasplavy. 3, 47–53 (1993)Google Scholar
  12. 12.
    Shevelin, P.Yu., Molchanova, N.G., Yolshin, A.N., Batalov, N.N.: Electron transfer in an electron-ion molten mixture of CuCl–CuCl2–MeCl (Me = Li, Na, K, Cs). Electrochim. Acta 48, 1385–1394 (2003)CrossRefGoogle Scholar
  13. 13.
    Saluev, A.B., Redkin, A.A., Hohlov, V.A.: Electroprovodnost rasplavov sistemy CsCl–CeCl3–Cl2 pri razlichnich davleniyah hlora (in Russian). Rasplavy. 4, 66–72 (1999)Google Scholar
  14. 14.
    Zinchenko, V.F., Shapovalov, A.V., Sadovskaya, L.V.: Ionno-elektronnaya provodimost rasplavov slozhnih halkogenidov evropiya (II) (in Russian). Rasplavy. 2, 78–80 (1997)Google Scholar
  15. 15.
    Elshin, A.N., Shevelin, P.Yu., Molchanova, N.G., Batalov, N.N., Red’kin, A.A.: Electron transfer in the CuCl–CuCl2–LiCl melt. Russ. J. Electrochem. 33, 1299–1305 (1997)Google Scholar
  16. 16.
    Shevelin, P.Yu., Raskovalov, A.A., Molchanova, N.G.: An electron transfer in CuCl–CuCl2 melt at different Cl2 partial pressures. Ionics 23, 3163–3168 (2017)CrossRefGoogle Scholar
  17. 17.
    Smirnov, M.V., Stepanov, V.P.: Density and surface tension of molten alkali halides and their binary mixtures. Electrochim. Acta 27, 1551–1563 (1982)CrossRefGoogle Scholar
  18. 18.
    Janz, G.J., Tomkins, R.P.T., Allen, C.B., Downey Jr., J.R., Garner, G.L., Krebs, U., Singer, S.K.: Molten salts: volume 4, part 2, chlorides and mixtures, electrical conductance, density, viscosity, and surface tension data. J. Phys. Chem. Ref. Data 4, 871–1178 (1975)CrossRefGoogle Scholar
  19. 19.
    Sinyarev, G.B., Trusov, B.G., Slynko, L.E.: A universal program for determination of the composition of multicomponent working bodies and calculation of some thermal processes, in: Proceedings of the MVTU, No. 159, MVTU, Moscow (1973)Google Scholar
  20. 20.
    Glushko, V.P., Gurvich, L.V., Bergman, G.A., Veits, I.V., Medvedev, V.A., Khachkuruzov, G.A., Yungman, V.S.: Thermodinamicheskie Svoitsva Individual’nykh. Veshchestv, vol. I–IV. Science, Moscow (1978–1982)Google Scholar
  21. 21.
    Smith, W., Forester, T.: The DL_POLY Project. TCS Division, Daresbury Laboratory, Daresbury, Warrington WA4 4ADGoogle Scholar
  22. 22.
    Stafford, A.J., Silbert, M., Trullas, J., Giro, A.: Potentials and correlation functions for the copper halide and silver iodide melts: I. Static correlations. J. Phys. 2, 6631–6641 (1990)Google Scholar
  23. 23.
    Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallogr. A 32, 751–767 (1976)CrossRefGoogle Scholar
  24. 24.
    Andreev, O.L., Raskovalov, A.A., Larin, A.V.: A molecular dynamics simulation of lithium fluoride: volume phase and nanosized particle. Russ. J. Phys. Chem. 84, 48–52 (2010)CrossRefGoogle Scholar
  25. 25.
    Ezhov,Y.S., Gusarov, A.V.: Copper dichloride. Chemical Department of Moscow State University. http://www.chem.msu.su/Zn/Cu/CuCl2.html (2006); accessed 19 January 2006
  26. 26.
    Ruthven, J.D.M., Kenney, C.N.: Equilibrium chlorine pressures over cupric chloride melts. J. Inorg. Nucl. Chem. 30, 931–944 (1968)CrossRefGoogle Scholar
  27. 27.
    Lurie, YuYu.: Spravochnik po analiticheskoy himii. Chemistry, Moscow (1971)Google Scholar
  28. 28.
    Giazitzoglou, Z.: Redox electromotive force measurments in the molten CuCl–CuCl2 system and thermodynamics properties of liquid CuCl2. J. Chem. Eng. Data 29, 3–5 (1984)CrossRefGoogle Scholar
  29. 29.
    Eisenberg, S., Jal, J.-F., Dupuy, J., Chieux, P., Knoll, W.: Neutron diffraction determination of the partial structure factors of molten CuCl. Phil. Mag. A 46, 195–209 (1982)CrossRefGoogle Scholar
  30. 30.
    Alcaraz, O., Trullàs, J., Tahara, S., Kawakita, Y., Takeda, S.: The structure of molten CuCl: reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model. J. Chem. Phys. 145, 094503 (2016).  https://doi.org/10.1063/1.4962181 CrossRefPubMedGoogle Scholar
  31. 31.
    Kolmel, Ch., Ahlrichs, R.: An ab initio investigation of copper complexes with supershort copper-copper distances. J. Phys. Chem. 94, 5536–5542 (1990)CrossRefGoogle Scholar
  32. 32.
    Zhao, H., Chang, J., Boika, A., Bard, A.J.: Electrochemistry of high concentration copper chloride complexes. Anal. Chem. 85, 7696–7703 (2013)CrossRefGoogle Scholar
  33. 33.
    Liu, W., Brugger, J., McPhail, D.C., Spiccia, L.: A spectrophotometric study of aqueous copper(I)–chloride complexes in LiCl solutions between 100 °C and 250 °C. Geochim. Cosmochim. Acta 66, 3615–3633 (2002)CrossRefGoogle Scholar
  34. 34.
    Elshin, A.N., Budimirov, M.A., Zakharov, V.V., Batalov, N.N.: Koefficienty diffuzii Cu+ i Cu2+ v legkoplavkikh smesyakh galogenidov shelochnykh metallov (in Russian). Rasplavy. 3, 120–123 (1989)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of High-Temperature Electrochemistry of the Ural Branch of Russian Academy of SciencesYekaterbinburgRussian Federation

Personalised recommendations