Advertisement

Insights into the Nature of Eutectic and Deep Eutectic Mixtures

  • Mónia A. R. Martins
  • Simão P. Pinho
  • João A. P. Coutinho
Article
  • 154 Downloads

Abstract

A stricter definition of a deep eutectic solvent (DES) is urgent, so that it may become a sound basis for further developments in this field. This communication aims at contributing to deepening the understanding of eutectic and deep eutectic mixtures concerning their definition, thermodynamic nature and modelling. The glut of literature on DES applications should be followed by a similar effort to address the fundamental questions on their nature. This hopefully would contribute to correct some widespread misconceptions, and help to establish a stringent definition of what a DES is. DES are eutectic mixtures for which the eutectic point temperature should be lower to that of an ideal liquid mixture. To identify and characterize them, their phase diagrams should be known, in order to compare the real temperature depression to that predicted if ideality is assumed, and to define composition ranges for which they are in the liquid state at operating temperatures. It is also shown that hydrogen bonding between the DES components should not be used to define or characterize a DES, since this would describe many ideal mixtures. The future of deep eutectic solvents is quite promising, and we expect that this work will contribute to the efficient design and selection of the best DES for a given application, and to model properties and phase equilibria without which the process design is impractical.

Keywords

Deep eutectic solvents Eutectic mixtures Definitions Solid–liquid equilibria Modelling 

Notes

Acknowledgements

This work was developed in the scope of the Project CICECO – Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (Ref. FCT UID/CTM/50011/2013) and Associate Laboratory LSRE-LCM, POCI-01-0145-FEDER-006984 (Ref. FCT UID/EQU/50020/2013), both financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. This work is also a result of Project “AIProcMat@N2020 - Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020”, with the reference NORTE-01-0145-FEDER-000006, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). FCT is also acknowledged for funding the project DeepBiorefinery (PTDC/AGRTEC/1191/2014). The authors thank Olga Ferreira for fruitful discussions.

Supplementary material

10953_2018_793_MOESM1_ESM.docx (440 kb)
Supplementary material 1 (DOCX 439 kb)

References

  1. 1.
    Gamsjäger, H., Lorimer, J.W., Scharlin, P., Shaw, D.G.: Glossary of terms related to solubility (IUPAC Recommendations 2008). Pure Appl. Chem. 80, 233–276 (2008).  https://doi.org/10.1351/pac200880020233 CrossRefGoogle Scholar
  2. 2.
    Guthrie, F.: LII. On eutexia. Philos. Mag. Ser. 5(17), 462–482 (1884).  https://doi.org/10.1080/14786448408627543 CrossRefGoogle Scholar
  3. 3.
    Gmehling, J., Kolbe, B., Kleiber, M., Rarey, J.: Chemical Thermodynamics for Process Simulation. Wiley, New York (2012)Google Scholar
  4. 4.
    Coutinho, J.A.P., Andersen, S.I., Stenby, E.H.: Evaluation of activity coefficient models in prediction of alkane solid–liquid equilibria. Fluid Phase Equilib. 103, 23–39 (1995).  https://doi.org/10.1016/0378-3812(94)02600-6 CrossRefGoogle Scholar
  5. 5.
    Hoang Pham, U.G.: Pharmaceutical applications of eutectic mixtures. J. Dev. Drugs 2, 1–2 (2013).  https://doi.org/10.4172/2329-6631.1000e130 CrossRefGoogle Scholar
  6. 6.
    Palomo Del Barrio, E., Cadoret, R., Daranlot, J., Achchaq, F.: New sugar alcohols mixtures for long-term thermal energy storage applications at temperatures between 70 °C and 100 °C. Sol. Energy Mater. Sol. Cells 155, 454–468 (2016).  https://doi.org/10.1016/j.solmat.2016.06.048 CrossRefGoogle Scholar
  7. 7.
    Yong, C.S., Oh, Y.-K., Jung, S.H., Rhee, J.-D., Kim, H.-D., Kim, C.-K., Choi, H.-G.: Preparation of ibuprofen-loaded liquid suppository using eutectic mixture system with menthol. Eur. J. Pharm. Sci. 23, 347–353 (2004).  https://doi.org/10.1016/j.ejps.2004.08.008 CrossRefPubMedGoogle Scholar
  8. 8.
    Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K.: Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126, 9142–9147 (2004).  https://doi.org/10.1021/ja048266j CrossRefPubMedGoogle Scholar
  9. 9.
    Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V.: Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 99, 70–71 (2003).  https://doi.org/10.1039/b210714g CrossRefGoogle Scholar
  10. 10.
    Smith, E.L., Abbott, A.P., Ryder, K.S.: Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114, 11060–11082 (2014).  https://doi.org/10.1021/cr300162p CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang, Q., De Oliveira Vigier, K., Royer, S., Jérôme, F.: Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146 (2012).  https://doi.org/10.1039/c2cs35178a CrossRefPubMedGoogle Scholar
  12. 12.
    Tang, B., Row, K.H.: Recent developments in deep eutectic solvents in chemical sciences. Monatsh. Chem. 144, 1427–1454 (2013).  https://doi.org/10.1007/s00706-013-1050-3 CrossRefGoogle Scholar
  13. 13.
    Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., Duarte, A.R.C.: Natural deep eutectic solvents—solvents for the 21st century. ACS Sustain. Chem. Eng. 2, 1063–1071 (2014).  https://doi.org/10.1021/sc500096j CrossRefGoogle Scholar
  14. 14.
    Marcus, Y.: Unconventional deep eutectic solvents: aqueous salt hydrates. ACS Sustain. Chem. Eng. 5, 11780–11787 (2017).  https://doi.org/10.1021/acssuschemeng.7b03528 CrossRefGoogle Scholar
  15. 15.
    Ashworth, C.R., Matthews, R.P., Welton, T., Hunt, P.A.: Doubly ionic hydrogen bond interactions within the choline chloride–urea deep eutectic solvent. Phys. Chem. Chem. Phys. 18, 18145–18160 (2016).  https://doi.org/10.1039/C6CP02815B CrossRefPubMedGoogle Scholar
  16. 16.
    Abbott, A.P., Ahmed, E.I., Prasad, K., Qader, I.B., Ryder, K.S.: Liquid pharmaceuticals formulation by eutectic formation. Fluid Phase Equilib. 448, 2–8 (2017).  https://doi.org/10.1016/j.fluid.2017.05.009 CrossRefGoogle Scholar
  17. 17.
    Abbott, A.P., Cullis, P.M., Gibson, M.J., Harris, R.C., Raven, E.: Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem. 9, 868–872 (2007).  https://doi.org/10.1039/b702833d CrossRefGoogle Scholar
  18. 18.
    Pontes, P.V.A., Crespo, E.A., Martins, M.A.R., Silva, L.P., Neves, C.M.S.S., Maximo, G.J., Hubinger, M.D., Batista, E.A.C., Pinho, S.P., Coutinho, J.A.P., Sadowski, G., Held, C.: Measurement and PC-SAFT modeling of solid–liquid equilibrium of deep eutectic solvents of quaternary ammonium chlorides and carboxylic acids. Fluid Phase Equilib. 448, 69–80 (2017).  https://doi.org/10.1016/j.fluid.2017.04.007 CrossRefGoogle Scholar
  19. 19.
    Crespo, E.A., Silva, L.P., Martins, M.A.R., Fernandez, L., Ortega, J., Ferreira, O., Sadowski, G., Held, C., Pinho, S.P., Coutinho, J.A.P.: Characterization and modeling of the liquid phase of deep eutectic solvents based on fatty acids/alcohols and choline chloride. Ind. Eng. Chem. Res. 56, 12192–12202 (2017).  https://doi.org/10.1021/acs.iecr.7b02382 CrossRefGoogle Scholar
  20. 20.
    Shen, Q., Li, X., Li, W., Zhao, X.: Enhanced intestinal absorption of Daidzein by borneol/menthol eutectic mixture and microemulsion. AAPS PharmSciTech 12, 1044–1049 (2011).  https://doi.org/10.1208/s12249-011-9672-4 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu, J., Fu, S., Wei, N., Hou, Y., Zhang, X., Cui, H.: The effects of combined menthol and borneol on fluconazole permeation through the cornea ex vivo. Eur. J. Pharmacol. 688, 1–5 (2012).  https://doi.org/10.1016/j.ejphar.2011.12.007 CrossRefPubMedGoogle Scholar
  22. 22.
    Li, F., Feng, J., Cheng, Q., Zhu, W., Jin, Y.: Delivery of 125I-cobrotoxin after intranasal administration to the brain: a microdialysis study in freely moving rats. Int. J. Pharm. 328, 161–167 (2007).  https://doi.org/10.1016/j.ijpharm.2006.08.011 CrossRefPubMedGoogle Scholar
  23. 23.
    Gohel, M.C., Nagori, S.A.: Resolving issues of content uniformity and low permeability using eutectic blend of camphor and menthol. Indian J. Pharm. Sci. 71, 622–629 (2009).  https://doi.org/10.4103/0250-474X.59543 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Phaechamud, T., Tuntarawongsa, S.: Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique. Int. J. Nanomed. 11, 2855–2865 (2016).  https://doi.org/10.2147/IJN.S108355 CrossRefGoogle Scholar
  25. 25.
    Stott, P.W., Williams, A.C., Barry, B.W.: Transdermal delivery from eutectic systems: enhanced permeation of a model drug, ibuprofen. J. Control. Release 50, 297–308 (1998).  https://doi.org/10.1016/S0168-3659(97)00153-3 CrossRefPubMedGoogle Scholar
  26. 26.
    Mohammadi-Samani, S., Yousefi, G., Mohammadi, F., Ahmadi, F.: Meloxicam transdermal delivery: effect of eutectic point on the rate and extent of skin permeation. Iran. J. Basic Med. Sci. 17, 112–118 (2014)PubMedPubMedCentralGoogle Scholar
  27. 27.
    Yong, C.S., Jung, S.H., Rhee, J.-D., Choi, H.-G., Lee, B.-J., Kim, D.-C., Choi, Y.W., Kim, C.-K.: Improved solubility and in vitro dissolution of ibuprofen from poloxamer gel using eutectic mixture with menthol. Drug Deliv. 10, 179–183 (2003).  https://doi.org/10.1080/713840406 CrossRefPubMedGoogle Scholar
  28. 28.
    Kaplun-Frischoff, Y., Touitou, E.: Testosterone skin permeation enhancement by menthol through formation of eutectic with drug and interaction with skin lipids. J. Pharm. Sci. 86, 1394–1399 (1997).  https://doi.org/10.1021/js9701465 CrossRefPubMedGoogle Scholar
  29. 29.
    Kang, L., Jun, H.W., McCall, J.W.: Physicochemical studies of lidocaine-menthol binary systems for enhanced membrane transport. Int. J. Pharm. 206, 35–42 (2000).  https://doi.org/10.1016/S0378-5173(00)00505-6 CrossRefPubMedGoogle Scholar
  30. 30.
    Nazzal, S., Smalyukh, I., Lavrentovich, O., Khan, M.A.: Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation. Int. J. Pharm. 235, 247–265 (2002).  https://doi.org/10.1016/S0378-5173(02)00003-0 CrossRefPubMedGoogle Scholar
  31. 31.
    Ribeiro, B.D., Florindo, C., Iff, L.C., Coelho, M.A.Z., Marrucho, I.M.: Menthol-based eutectic mixtures: hydrophobic low viscosity solvents. ACS Sustain. Chem. Eng. 3, 2469–2477 (2015).  https://doi.org/10.1021/acssuschemeng.5b00532 CrossRefGoogle Scholar
  32. 32.
    Aroso, I.M., Craveiro, R., Rocha, Â., Dionísio, M., Barreiros, S., Reis, R.L., Paiva, A., Duarte, A.R.C.: Design of controlled release systems for THEDES—therapeutic deep eutectic solvents, using supercritical fluid technology. Int. J. Pharm. 492, 73–79 (2015).  https://doi.org/10.1016/j.ijpharm.2015.06.038 CrossRefPubMedGoogle Scholar
  33. 33.
    Aroso, I.M., Silva, J.C., Mano, F., Ferreira, A.S.D., Dionísio, M., Sá-Nogueira, I., Barreiros, S., Reis, R.L., Paiva, A., Duarte, A.R.C.: Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. Eur. J. Pharm. Biopharm. 98, 57–66 (2016).  https://doi.org/10.1016/j.ejpb.2015.11.002 CrossRefPubMedGoogle Scholar
  34. 34.
    Tereshatov, E.E., Boltoeva, M.Y., Folden, C.M.: First evidence of metal transfer into hydrophobic deep eutectic and low-transition-temperature mixtures: indium extraction from hydrochloric and oxalic acids. Green Chem. 18, 4616–4622 (2016).  https://doi.org/10.1039/c5gc03080c CrossRefGoogle Scholar
  35. 35.
    Florindo, C., Branco, L.C., Marrucho, I.M.: Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equilib. 448, 135–142 (2017).  https://doi.org/10.1016/j.fluid.2017.04.002 CrossRefGoogle Scholar
  36. 36.
    Duarte, A.R.C., Ferreira, A.S.D., Barreiros, S., Cabrita, E., Reis, R.L., Paiva, A.: A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: solubility and permeability studies. Eur. J. Pharm. Biopharm. 114, 296–304 (2017).  https://doi.org/10.1016/j.ejpb.2017.02.003 CrossRefPubMedGoogle Scholar
  37. 37.
    Cordeiro, T., Castiñeira, C., Mendes, D., Danède, F., Sotomayor, J., Fonseca, I.M., Gomes da Silva, M., Paiva, A., Barreiros, S., Cardoso, M.M., Viciosa, M.T., Correia, N.T., Dionisio, M.: Stabilizing unstable amorphous menthol through inclusion in mesoporous silica hosts. Mol. Pharm. 14, 3164–3177 (2017).  https://doi.org/10.1021/acs.molpharmaceut.7b00386 CrossRefPubMedGoogle Scholar
  38. 38.
    Dietz, C.H.J.T., Kroon, M.C., Di Stefano, M., van Sint Annaland, M., Gallucci, F.: Selective separation of furfural and hydroxymethylfurfural from an aqueous solution using a supported hydrophobic deep eutectic solvent liquid membrane. Faraday Discuss. 206, 77–92 (2018).  https://doi.org/10.1039/C7FD00152E CrossRefGoogle Scholar
  39. 39.
    Florindo, C., McIntosh, A.J.S., Welton, T., Branco, L.C., Marrucho, I.M.: A closer look into deep eutectic solvents: exploring intermolecular interactions using solvatochromic probes. Phys. Chem. Chem. Phys. 20, 206–213 (2017).  https://doi.org/10.1039/C7CP06471C CrossRefPubMedGoogle Scholar
  40. 40.
    Gross, J., Sadowski, G.: Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40, 1244–1260 (2001).  https://doi.org/10.1021/ie0003887 CrossRefGoogle Scholar
  41. 41.
    Maugeri, Z., Domínguez de María, P.: Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Adv. 2, 421–425 (2012).  https://doi.org/10.1039/C1RA00630D CrossRefGoogle Scholar
  42. 42.
    Zafarani-Moattar, M.T., Asadzadeh, B., Shekaari, H.: Phase equilibrium of aqueous glycine + choline chloride ionic liquid solutions. J. Solution Chem. 45, 1842–1856 (2016).  https://doi.org/10.1007/s10953-016-0537-z CrossRefGoogle Scholar
  43. 43.
    Chemat, F., Anjum, H., Shariff, A.M., Kumar, P., Murugesan, T.: Thermal and physical properties of (choline chloride + urea + l-arginine) deep eutectic solvents. J. Mol. Liq. 218, 301–308 (2016).  https://doi.org/10.1016/j.molliq.2016.02.062 CrossRefGoogle Scholar
  44. 44.
    Fernandez, L., Silva, L.P., Martins, M.A.R., Ferreira, O., Ortega, J., Pinho, S.P., Coutinho, J.A.P.: Indirect assessment of the fusion properties of choline chloride from solid–liquid equilibria data. Fluid Phase Equilib. 448, 9–14 (2017).  https://doi.org/10.1016/j.fluid.2017.03.015 CrossRefGoogle Scholar
  45. 45.
    Maximo, G.J., Santos, R.J.B.N., Brandao, P., Esperanca, J.M.S.S., Costa, M.C., Meirelles, A.J.A., Freire, M.G., Coutinho, J.A.P.: Generating ionic liquids from ionic solids: an investigation of the melting behavior of binary mixtures of ionic liquids. Cryst. Growth Des. 14, 4270–4277 (2014).  https://doi.org/10.1021/cg500655s CrossRefGoogle Scholar
  46. 46.
    Stolarska, O., Soto, A., Rodríguez, H., Smiglak, M.: Properties modification by eutectic formation in mixtures of ionic liquids. RSC Adv. 5, 22178–22187 (2015).  https://doi.org/10.1039/C4RA17268J CrossRefGoogle Scholar
  47. 47.
    Domańska, U., Okuniewska, P., Królikowski, M.: Separation of 2-phenylethanol (PEA) from water using ionic liquids. Fluid Phase Equilib. 423, 109–119 (2016).  https://doi.org/10.1016/j.fluid.2016.04.022 CrossRefGoogle Scholar
  48. 48.
    Mahrova, M., Vilas, M., Domínguez, Á., Gómez, E., Calvar, N., Tojo, E.: Physicochemical characterization of new sulfonate and sulfate ammonium ionic liquids. J. Chem. Eng. Data 57, 241–248 (2012).  https://doi.org/10.1021/je200208h CrossRefGoogle Scholar
  49. 49.
    Lopes, J.M., Paninho, A.B., Môlho, M.F., Nunes, A.V.M., Rocha, A., Lourenço, N.M.T., Najdanovic-Visak, V.: Biocompatible choline based ionic salts: solubility in short-chain alcohols. J. Chem. Thermodyn. 67, 99–105 (2013).  https://doi.org/10.1016/J.JCT.2013.07.025 CrossRefGoogle Scholar
  50. 50.
    Diedrichs, A., Gmehling, J.: Measurement of heat capacities of ionic liquids by differential scanning calorimetry. Fluid Phase Equilib. 244, 68–77 (2006).  https://doi.org/10.1016/j.fluid.2006.03.015 CrossRefGoogle Scholar
  51. 51.
    Niedermeyer, H., Hallett, J.P., Villar-Garcia, I.J., Hunt, P.A., Welton, T.: Mixtures of ionic liquids. Chem. Soc. Rev. 41, 7780–7802 (2012).  https://doi.org/10.1039/c2cs35177c CrossRefPubMedGoogle Scholar
  52. 52.
    Wu, M., Yalkowsky, S.: Estimation of the molar heat capacity change on melting of organic compounds. Ind. Eng. Chem. Res. 48, 1063–1066 (2009).  https://doi.org/10.1021/ie801587c CrossRefGoogle Scholar
  53. 53.
    Flynn, G.L., Neau, S.H.: Solid and liquid heat capacities of n-alkyl para-aminobenzoates near the melting point. Pharm. Res. 7, 1157–1162 (1990).  https://doi.org/10.1023/A:1015984310068 CrossRefPubMedGoogle Scholar
  54. 54.
    Yalkowsky, S.H., Wu, M.: Estimation of the ideal solubility (crystal–liquid fugacity ratio) of organic compounds. J. Pharm. Sci. 99, 1100–1106 (2010).  https://doi.org/10.1002/JPS.21897 CrossRefPubMedGoogle Scholar
  55. 55.
    Pappa, G.D., Voutsas, E.C., Magoulas, K., Tassios, D.P.: Estimation of the differential molar heat capacities of organic compounds at their melting point. Ind. Eng. Chem. Res. 44, 3799–3806 (2005).  https://doi.org/10.1021/ie048916s CrossRefGoogle Scholar
  56. 56.
    Hildebrand, J.H., Prausnitz, J.M., Scott, R.L.: Regular and Related Solutions. Van Nostrand Reinhold, New York (1970)Google Scholar
  57. 57.
    Morrison, H.G., Sun, C.C., Neervannan, S.: Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int. J. Pharm. 378, 136–139 (2009).  https://doi.org/10.1016/j.ijpharm.2009.05.039 CrossRefPubMedGoogle Scholar
  58. 58.
    Meng, X., Ballerat-Busserolles, K., Husson, P., Andanson, J.-M.: Impact of water on the melting temperature of urea + choline chloride deep eutectic solvent. New J. Chem. 40, 4492–4499 (2016).  https://doi.org/10.1039/C5NJ02677F CrossRefGoogle Scholar
  59. 59.
    Rai, U.S., Rai, R.N.: Some physicochemical studies on organic eutectics and molecular complex: urea–p-nitrophenol system. J. Mater. Res. 14, 1299–1305 (1999).  https://doi.org/10.1557/JMR.1999.0177 CrossRefGoogle Scholar
  60. 60.
    Araujo, C.F., Coutinho, J.A.P., Nolasco, M.M., Parker, S.F., Ribeiro-Claro, P.J.A., Rudić, S., Soares, B.I.G., Vaz, P.D.: Inelastic neutron scattering study of reline: shedding light on the hydrogen bonding network of deep eutectic solvents. Phys. Chem. Chem. Phys. 19, 17998–18009 (2017).  https://doi.org/10.1039/C7CP01286A CrossRefPubMedGoogle Scholar
  61. 61.
    Faggian, M., Sut, S., Perissutti, B., Baldan, V., Grabnar, I., Dall’Acqua, S.: Natural deep eutectic solvents (NADES) as a tool for bioavailability improvement: pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats: possible application in nutraceuticals. Molecules 21, 1–11 (2016).  https://doi.org/10.3390/molecules21111531 CrossRefGoogle Scholar
  62. 62.
    Dai, Y., van Spronsen, J., Witkamp, G.-J.J., Verpoorte, R., Choi, Y.H.: Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 766, 61–68 (2013).  https://doi.org/10.1016/j.aca.2012.12.019 CrossRefPubMedGoogle Scholar
  63. 63.
    Hayyan, A., Mjalli, F.S., Alnashef, I.M., Al-Wahaibi, T., Al-Wahaibi, Y.M., Hashim, M.A.: Fruit sugar-based deep eutectic solvents and their physical properties. Thermochim. Acta 541, 70–75 (2012).  https://doi.org/10.1016/j.tca.2012.04.030 CrossRefGoogle Scholar
  64. 64.
    Hayyan, A., Mjalli, F.S., Alnashef, I.M., Al-Wahaibi, Y.M., Al-Wahaibi, T., Hashim, M.A.: Glucose-based deep eutectic solvents: physical properties. J. Mol. Liq. 178, 137–141 (2013).  https://doi.org/10.1016/j.molliq.2012.11.025 CrossRefGoogle Scholar
  65. 65.
    Carriazo, D., Serrano, M.C., Gutiérrez, M.C., Ferrer, M.L., del Monte, F.: Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem. Soc. Rev. 41, 4996–5014 (2012).  https://doi.org/10.1039/c2cs15353j CrossRefPubMedGoogle Scholar
  66. 66.
    Dai, Y., Witkamp, G.J., Verpoorte, R., Choi, Y.H.: Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 187, 14–19 (2015).  https://doi.org/10.1016/j.foodchem.2015.03.123 CrossRefPubMedGoogle Scholar
  67. 67.
    Ruß, C., König, B.: Low melting mixtures in organic synthesis—an alternative to ionic liquids? Green Chem. 14, 2969–2982 (2012).  https://doi.org/10.1039/c2gc36005e CrossRefGoogle Scholar
  68. 68.
    Espino, M., de los Ángeles Fernández, M., Gomez, F.J.V., Silva, M.F.: Natural designer solvents for greening analytical chemistry. TrAC Trends Anal. Chem. 76, 126–136 (2016).  https://doi.org/10.1016/j.trac.2015.11.006 CrossRefGoogle Scholar
  69. 69.
    Francisco, M., Van Den Bruinhorst, A., Kroon, M.C.: Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew. Chem. Int. Ed. 52, 3074–3085 (2013).  https://doi.org/10.1002/anie.201207548 CrossRefGoogle Scholar
  70. 70.
    Lavaud, A., Laguerre, M., Birtic, S., Tixier, Fabiano, A.S., Roller, M., Chemat, F., Bily, A.C.: Eutectic extraction solvents, extraction methods by eutectigenesis using said solvents, and extracts derived from said extraction methods—Patent WO 2016162703 A1 (2016)Google Scholar
  71. 71.
    Naturex: Naturex Group and the Personal Care Market, http://www.naturex.com/BUSINESS-UNITS/Personal-Care#Eutectys
  72. 72.
    Ilgen, F., Ott, D., Kralisch, D., Reil, C., Burkhard, K.: Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chem. 11, 1948–1954 (2009).  https://doi.org/10.1039/b917548m CrossRefGoogle Scholar
  73. 73.
    Martins, M., Aroso, I.M., Reis, R.L., Duarte, A.R.C., Craveiro, R., Paiva, A.: Enhanced performance of supercritical fluid foaming of natural-based polymers by deep eutectic eolvents. AIChE J. 60, 3701–3706 (2014).  https://doi.org/10.1002/aic.14607 CrossRefGoogle Scholar
  74. 74.
    Miller, E., Hartel, R.W.: Sucrose crystallization in caramel. J. Food Eng. 153, 28–38 (2015).  https://doi.org/10.1016/j.jfoodeng.2014.11.028 CrossRefGoogle Scholar
  75. 75.
    Hurtta, M., Pitkänen, I., Knuutinen, J.: Melting behaviour of d-sucrose, d-glucose and d-ructose. Carbohydr. Res. 339, 2267–2273 (2004).  https://doi.org/10.1016/j.carres.2004.06.022 CrossRefPubMedGoogle Scholar
  76. 76.
    Magoń, A., Wurm, A., Schick, C., Pangloli, P., Zivanovic, S., Skotnicki, M., Pyda, M.: Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry. Thermochim. Acta 603, 149–161 (2015).  https://doi.org/10.1016/j.tca.2014.12.013 CrossRefGoogle Scholar
  77. 77.
    Gong, X., Wang, C., Zhang, L., Qu, H.: Solubility of xylose, mannose, maltose monohydrate, and trehalose dihydrate in ethanol–water solutions. J. Chem. Eng. Data 57, 3264–3269 (2012).  https://doi.org/10.1021/je300885g CrossRefGoogle Scholar
  78. 78.
    Van Putten, R.J., Winkelman, J.G.M., Keihan, F., Van Der Waal, J.C., De Jong, E., Heeres, H.J.: Experimental and modeling studies on the solubility of d-arabinose, d-fructose, d-glucose, d-mannose, sucrose and d-xylose in methanol and methanol–water mixtures. Ind. Eng. Chem. Res. 53, 8285–8290 (2014).  https://doi.org/10.1021/ie500576q CrossRefGoogle Scholar
  79. 79.
    Ferreira, O., Brignole, E.A., Macedo, E.A.: Phase equilibria in sugar solutions using the A-UNIFAC model. Ind. Eng. Chem. Res. 42, 6212–6222 (2003).  https://doi.org/10.1021/ie030246n CrossRefGoogle Scholar
  80. 80.
    Choi, Y.H., van Spronsen, J., Dai, Y., Verberne, M., Hollmann, F., Arends, I.W.C.E., Witkamp, G.-J., Verpoorte, R.: Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 156, 1701–1705 (2011).  https://doi.org/10.1104/pp.111.178426 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Roux, M.V., Temprado, M., Chickos, J.S.: Vaporization, fusion and sublimation enthalpies of the dicarboxylic acids from C4 to C14 and C16. J. Chem. Thermodyn. 37, 941–953 (2005).  https://doi.org/10.1016/J.JCT.2004.12.011 CrossRefGoogle Scholar
  82. 82.
    Chickos, J.S., Braton, C.M., Hesse, D.G., Liebman, J.F.: Estimating entropies and enthalpies of fusion of organic compounds. J. Org. Chem. 56, 927–938 (1991).  https://doi.org/10.1021/jo00003a007 CrossRefGoogle Scholar
  83. 83.
    Tong, B., Liu, R.-B., Meng, C.-G., Yu, F.-Y., Ji, S.-H., Tan, Z.-C.: Heat capacities and nonisothermal thermal decomposition reaction kinetics of d-mannitol. J. Chem. Eng. Data 55, 119–124 (2010).  https://doi.org/10.1021/je900285w CrossRefGoogle Scholar
  84. 84.
    Jesus, A.J.L., Tomé, L.I.N., Eusébio, M.E., Redinha, J.S.: Enthalpy of sublimation in the study of the solid state of organic compounds. Application to erythritol and threitol. J. Phys. Chem. B 109, 18055–18060 (2005).  https://doi.org/10.1021/jp051621n CrossRefGoogle Scholar
  85. 85.
    Qin, L., Li, J., Cheng, H., Chen, L., Qi, Z., Yuan, W.: Association extraction for vitamin E recovery from deodorizer distillate by in situ formation of deep eutectic solvent. AIChE J. 63, 2212–2220 (2017).  https://doi.org/10.1002/aic.15606 CrossRefGoogle Scholar
  86. 86.
    Lloret, J.O., Vega, L.F., Llovell, F.: Accurate description of thermophysical properties of tetraalkylammonium chloride deep eutectic solvents with the soft-SAFT equation of state. Fluid Phase Equilib. 448, 81–93 (2017).  https://doi.org/10.1016/j.fluid.2017.04.013 CrossRefGoogle Scholar
  87. 87.
    van Osch, D.J.G.P., Zubeir, L.F., van den Bruinhorst, A., Rocha, M.A.A., Kroon, M.C.: Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem. 17, 4518–4521 (2015).  https://doi.org/10.1039/C5GC01451D CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mónia A. R. Martins
    • 1
    • 2
    • 3
  • Simão P. Pinho
    • 2
    • 3
  • João A. P. Coutinho
    • 1
  1. 1.CICECO – Aveiro Institute of Materials, Department of ChemistryUniversity of AveiroAveiroPortugal
  2. 2.Associate Laboratory LSRE-LCM, Department of Chemical and Biological TechnologyPolytechnic Institute of BragançaBragançaPortugal
  3. 3.Mountain Research Center CIMOPolytechnic Institute of BragançaBragançaPortugal

Personalised recommendations