Journal of Solution Chemistry

, Volume 47, Issue 5, pp 892–905 | Cite as

Imidazolium-Based Ionic Liquids Containing the Trifluoroacetate Anion: Thermodynamic Study

  • Dzmitry H. Zaitsau
  • Sergey P. Verevkin


New experimental vapor pressures and vaporization enthalpies of the ionic liquids \( [ {\text{C}}_{2} {\text{mim][CF}}_{3} {\text{CO}}_{2} ] \) and \( [ {\text{C}}_{4} {\text{mim][CF}}_{3} {\text{CO}}_{2} ] \) have been measured by the QCM method. The solution enthalpies of these ionic liquids were measured by using high-precision solution calorimetry and were used for calculation the aqueous enthalpy of formation \( \Delta_{\text{f}} H_{\text{m}}^{ \circ } ({\text{CF}}_{ 3} {\text{CO}}_{2}^{ - } ,_{{}} {\text{aq}}) \) of the anion for combination with quantum-chemical results. The solubility parameters of the ILs under study have been derived from experimental \( \Delta_{\text{l}}^{\text{g}} H_{\text{m}}^{ \circ } \)(298.15 K) values and were used for estimation of miscibility of some common solutes with \( [ {\text{C}}_{n} {\text{mim][CF}}_{3} {\text{CO}}_{2} ] \).


Ionic liquid Enthalpy of vaporization Enthalpy of solution Vapor pressure Enthalpy of formation 



This work has been supported by the German Science Foundation (DFG) in the framework of the priority program SPP 1807 “Control of London Dispersion Interactions in Molecular Chemistry”, as well as of the priority program SPP 1708 “Material Synthesis Near Room Temperature”. This work has been also partly supported by the Russian Government Program of Competitive Growth of Kazan Federal University and Russian Foundation for Basic Research No. 15-03-07475. We gratefully acknowledge the contribution of Dr. Vladimir N. Emel´yanenko for quantum-chemical calculations. We also gratefully acknowledge the contribution of Dr. Andrei V. Yermalayeu for the solution calorimetry measurements.

Supplementary material

10953_2018_760_MOESM1_ESM.docx (145 kb)
Supplementary material 1 (DOCX 145 kb)


  1. 1.
    Hansen, C.M.: 50 Years with solubility parameters—past and future. Prog. Org. Coatings. 51, 77–84 (2004). CrossRefGoogle Scholar
  2. 2.
    Yoo, B., Afzal, W., Prausnitz, J.M.: Solubility parameters for nine ionic liquids. Ind. Eng. Chem. Res. 51, 9913–9917 (2012). CrossRefGoogle Scholar
  3. 3.
    Emel’yanenko, V.N., Zaitsau, D.H., Verevkin, S.P., Heintz, A., Voss, K., Schulz, A.: Vaporization and formation enthalpies of 1-alkyl-3-methylimidazolium tricyanomethanides. J. Phys. Chem. B. 115, 11712–11717 (2011);
  4. 4.
    Zaitsau, D.H.: Emel’yanenko, V.N., Verevkin, S.P., Heintz, A., Emel’Yanenko, V.N., Verevkin, S.P., Heintz, A.: Sulfur-containing ionic liquids. Rotating-bomb combustion calorimetry and first-principles calculations for 1-ethyl-3-methylimidazolium thiocyanate. J. Chem. Eng. Data 55, 5896–5899 (2010). CrossRefGoogle Scholar
  5. 5.
    Verevkin, S.P.: Emel’yanenko, V.N., Zaitsau, D.H., Heintz, A., Muzny, C.D., Frenkel, M.: Thermochemistry of imidazolium-based ionic liquids: experiment and first-principles calculations. Phys. Chem. Chem. Phys. 12, 14994–15000 (2010). CrossRefPubMedGoogle Scholar
  6. 6.
    Varfolomeev, M.A., Khachatrian, A.A., Akhmadeev, B.S., Solomonov, B.N., Yermalayeu, A.V., Verevkin, S.P.: Enthalpies of solution and enthalpies of solvation in water: the anion effect in ionic liquids with common 1-ethyl-3-methyl-imidazolium cation. J. Solution Chem. 44, 811–823 (2015). CrossRefGoogle Scholar
  7. 7.
    Kernchen, U., Etzold, B., Korth, W., Jess, A.: Solid catalyst with ionic liquid layer (SCILL) – A new concept to improve selectivity illustrated by hydrogenation of cyclooctadiene. Chem. Eng. Technol. 30, 985–994 (2007). CrossRefGoogle Scholar
  8. 8.
    Fehrmann, R., Riisager, A., Haumann, M. (eds.): Supported Ionic Liquids: Fundamentals and Applications. WILEY-VCH Verlag, Weinheim (2014)Google Scholar
  9. 9.
    Verevkin, S.P., Zaitsau, D.H.: Emel`yanenko, V.N., Heintz, A.: A new method for the determination of vaporization enthalpies of ionic liquids at low temperatures. J. Phys. Chem. B. 115, 12889–12895 (2011). CrossRefPubMedGoogle Scholar
  10. 10.
    Sauerbrey, G.: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206–222 (1959). CrossRefGoogle Scholar
  11. 11.
    Zaitsau, D.H., Yermalayeu, A.: V, Emel’yanenko, V.N., Butler, S., Schubert, T., Verevkin, S.P.: Thermodynamics of imidazolium-based ionic liquids containing PF6 anions. J. Phys. Chem. B. 120, 7949–7957 (2016). CrossRefPubMedGoogle Scholar
  12. 12.
    Yermalayeu, A.V., Zaitsau, D.H.: Emel’yanenko, V.N., Verevkin, S.P.: Thermochemistry of ammonium based ionic liquids: thiocyanates—experiments and computations. J. Solution Chem. 44, 754–768 (2015). CrossRefGoogle Scholar
  13. 13.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J. V, Cioslowski, J., Fox, D.J.: Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2016 (2016)Google Scholar
  14. 14.
    Verevkin, S.P.: Emel’yanenko, V.N., Notario, R., Roux, M.V., Chickos, J.S., Liebman, J.F.: Rediscovering the wheel. Thermochemical analysis of energetics of the aromatic diazines. J. Phys. Chem. Lett. 3, 3454–3459 (2012). CrossRefPubMedGoogle Scholar
  15. 15.
    Curtiss, L.A., Redfern, P.C., Raghavachari, K., Rassolov, V., Pople, J.A.: Gaussian-3 theory using reduced Möller-Plesset order. J. Chem. Phys. 110, 4703–4709 (1999). CrossRefGoogle Scholar
  16. 16.
    Verevkin, S.P., Zaitsau, D.H.: Emel’yanenko, V.N., Yermalayeu, A. V, Schick, C., Liu, H., Maginn, E.J., Bulut, S., Krossing, I., Kalb, R.: Making sense of enthalpy of vaporization trends for ionic liquids: new experimental and simulation data show a simple linear relationship and help reconcile previous data. J. Phys. Chem. B. 117, 6473–6486 (2013). CrossRefPubMedGoogle Scholar
  17. 17.
    Zaitsau, D.H., Yermalayeu, A. V., Emel’yanenko, V.N., Verevkin, S.P.: Thermodynamics of imidazolium based ionic liquids containing trifluoromethylsulfonate anion. Chem. Eng. Technol. (2018, accepted)Google Scholar
  18. 18.
    Ficke, L.E., Novak, R.R., Brennecke, J.F.: Thermodynamic and thermophysical properties of ionic liquid + water systems. J. Chem. Eng. Data 55, 4946–4950 (2010). CrossRefGoogle Scholar
  19. 19.
    Strechan, A.A., Paulechka, Y.U., Blokhin, A.V., Kabo, G.J.: Low-temperature heat capacity of hydrophilic ionic liquids BMIM CF3COO and BMIM CH3COO and a correlation scheme for estimation of heat capacity of ionic liquids. J. Chem. Thermodyn. 40, 632–639 (2008). CrossRefGoogle Scholar
  20. 20.
    Zaitsau, D.H., Emel’yanenko, V.N., Stange, P., Schick, C., Verevkin, S.P., Ludwig, R.: Dispersion and hydrogen bonding rule: Why the vaporization enthalpies of aprotic ionic liquids are significantly larger than those of protic ionic liquids. Angew. Chemie Int. Ed. 55, 11682–11686 (2016);
  21. 21.
    Benoit, R.L., Louis, C., Frechette, M.: Solution and ionization of some carboxylic acids in water and dimethyl sulfoxide. Thermochim. Acta 176, 221–232 (1991). CrossRefGoogle Scholar
  22. 22.
    Pedley, J.B., Naylor, R.D., Kirby, S.P., Pedley, J.B.: Thermochemical Data of Organic Compounds. Chapman & Hall, London (1986)CrossRefGoogle Scholar
  23. 23.
    Preiss, U.P., Zaitsau, D.H., Beichel, W., Himmel, D., Higelin, A., Merz, K., Caesar, N., Verevkin, S.P.: Estimation of lattice enthalpies of ionic liquids supported by Hirshfeld analysis. ChemPhysChem 16, 2890–2898 (2015). CrossRefPubMedGoogle Scholar
  24. 24.
    Wagman, D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS tables of chemical thermodynamic properties. J. Phys. Chem. Ref. Data. 11, Suppl. 2 (1982)Google Scholar
  25. 25.
    Bonhôte, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K., Grätzel, M.: Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178 (1996). CrossRefPubMedGoogle Scholar
  26. 26.
    Jiang, L.-K., Wang, L.-S., Du, C.-J., Wang, X.-Y.: Activity coefficients at infinite dilution of organic solutes in 1-hexyl-3-methylimidazolium trifluoroacetate and influence of interfacial adsorption using gas–liquid chromatography. J. Chem. Thermodyn. 70, 138–146 (2014). CrossRefGoogle Scholar
  27. 27.
    Majer, V., Svoboda, V., Kehiaian, H.: V: Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation. Blackwell Scientific Publications, Oxford (1985)Google Scholar
  28. 28.
    Lide, D.R.: CRC handbook of Chemistry and Physics: a Ready-Reference Book of Chemical and Physical Data. CRC Press, Boca Raton, FL (2009)Google Scholar
  29. 29.
    Heintz, A., Kulikov, D.V., Verevkin, S.P.: Thermodynamic properties of mixtures containing ionic liquids. 1. Activity coefficients at infinite dilution of alkanes, alkenes, and alkylbenzenes in 4-methyl-n-butylpyridinium tetrafluoroborate using gas − liquid chromatography. J. Chem. Eng. Data 46, 1526–1529 (2001). CrossRefGoogle Scholar
  30. 30.
    Verevkin, S.P., Zaitsau, D.H., Tong, B., Welz-Biermann, U.: New for old. Password to the thermodynamics of the protic ionic liquids. Phys. Chem. Chem. Phys. 13, 12708–12711 (2011). CrossRefPubMedGoogle Scholar
  31. 31.
    Domańska, U., Marciniak, A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium trifluoroacetate. J. Phys. Chem. B. 111, 11984–11988 (2007). CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical Chemistry and Department of “Science and Technology of Life, Light and Matter”University of RostockRostockGermany
  2. 2.Department of Physical ChemistryKazan Federal UniversityKazanRussia

Personalised recommendations