Journal of Solution Chemistry

, Volume 47, Issue 3, pp 498–510 | Cite as

Liquid–Liquid Equilibrium of Water + 1-Propanol or 1-Butanol + Dibutyl Ether Ternary Systems: Measurements and Correlation at Three Temperatures

Article

Abstract

Liquid–liquid equilibrium (LLE) date for the ternary systems of {water + 1-propanol + dibutyl ether (DBE)} and (water + 1-butanol + DBE) were determined at T = (293.15, 303.15, 308.15) K under atmospheric pressure. Distribution coefficients and separation factors of 1-propanol in the mixtures were calculated and are discussed. The influence of temperature on the liquid phase regions was analyzed. In addition, the experimental values were correlated well with the modified and extended UNIQUAC models; the modified UNIQUAC model represents the data better than the extended UNIQUAC model.

Keywords

Liquid–liquid equilibrium Dibutyl ether Modified UNIQUAC model Extended UNIQUAC model 

References

  1. 1.
    Tynjälä, P., Pakkanen, T.T., Mustamäki, S.: Modification of ZSM-5 zeolite with trimethyl phosphite. 2. Catalytic properties in the conversion of C1–C4 alcohols. J. Phys. Chem. B 102, 5280–5286 (1998)CrossRefGoogle Scholar
  2. 2.
    Demirel, Y.: Estimation of the entropy of vaporization at the normal boiling point for azeotropic mixtures containing water, alcohol or acetic acid. Thermochim. Acta 339, 79–85 (1999)CrossRefGoogle Scholar
  3. 3.
    Cháfer, A., de la Torre, J., Lladosa, E., Montón, J.B.: Liquid–liquid equilibria of 4-methyl-2-pentanone + 1-propanol or 2-propanol + water ternary systems: measurements and correlation at different temperatures. Fluid Phase Equilib. 361, 23–29 (2014)CrossRefGoogle Scholar
  4. 4.
    Çehreli, S., Özmen, D., Dramur, U.: (Liquid + liquid) equilibria of (water + 1-propanol + solvent) at T = 298.2 K. Fluid Phase Equilib. 239, 156–160 (2006)CrossRefGoogle Scholar
  5. 5.
    Ghanadzadeh, H., Ghanadzadeh, A., Bahrpaima, K.: Measurement and prediction of tie-line data for mixtures of (water + 1-propanol + diisopropyl ether): LLE diagrams as a function of temperature. Fluid Phase Equilib. 277, 126–130 (2009)CrossRefGoogle Scholar
  6. 6.
    Merzougui, A., Hasseine, A., Kabouche, A., Korichi, M.: LLE for the extraction of alcohol from aqueous solutions with diethyl ether and dichloromethane at 293.15 K, parameter estimation using a hybrid genetic based approach. Fluid Phase Equilib. 309, 161–167 (2011)CrossRefGoogle Scholar
  7. 7.
    Wypych, G.: Handbook of Solvents. ChemTec Publishing, Toronto (2001)Google Scholar
  8. 8.
    Wang, C., Guo, J., Cheng, K., Chen, Y.: Ternary (liquid + liquid) equilibria for the extraction of ethanol, or 2-propanol from aqueous solutions with 1,1′-oxybis (butane) at different temperatures. J. Chem. Thermodyn. 94, 119–126 (2016)CrossRefGoogle Scholar
  9. 9.
    Park, S.J., Hwang, I.C., Kwak, H.Y.: Binary liquid–liquid equilibrium (LLE) for dibutyl ether (DBE) + water from (288.15 to 318.15) K and ternary LLE for systems of DBE + C1–C4 alcohols + water at 298.15 K. J. Chem. Eng. Data 53, 2089–2094 (2008)CrossRefGoogle Scholar
  10. 10.
    Arce, A., Rodríguez, H., Rodríguez, O., Soto, A.: (Liquid + liquid) equilibrium of (dibutyl ether + methanol + water) at different temperatures. J. Chem. Thermodyn. 37, 1007–1012 (2005)CrossRefGoogle Scholar
  11. 11.
    Tamura, K., Chen, Y., Tada, K., Yamada, T., Nagata, I.: Representation of multicomponent liquid–liquid equilibria for aqueous and organic solutions using a modified UNIQUAC model. J. Solution Chem. 29, 463–488 (2000)CrossRefGoogle Scholar
  12. 12.
    Nagata, I.: Modification of the extended UNIQUAC model for correlating quaternary liquid–liquid equilibria data. Fluid Phase Equilib. 54, 191–206 (1990)CrossRefGoogle Scholar
  13. 13.
    Barton, A.F.M. (ed): IUPAC Solubility Data Series, Vol. 15. Alcohols with Water. Pergamon Press (1984) https://srdata.nist.gov/solubility/ Accessed March 8, 2018
  14. 14.
    Stephenson, R., Stuart, J.: Mutual binary solubilities: water–alcohols and water–esters. J. Chem. Eng. Data 31, 56–70 (1986)CrossRefGoogle Scholar
  15. 15.
    Pirahmadi, F., Dehghani, M.R., Behzadi, B.: Experimental and theoretical study on liquid–liquid equilibrium of 1-butanol + water + NH4Cl at 298.15, 308.15 and 318.15 K. Fluid Phase Equilib. 325, 1–5 (2012)CrossRefGoogle Scholar
  16. 16.
    Sørensen, J.M., Arlt, W.: Liquid–liquid equilibrium data collection. Vol. V, Part 1. DECHEMA, Frankfurt/Main (1980)Google Scholar
  17. 17.
    Prausnitz, J.M., Anderson, T.F., Grens, E.A., Eckert, C.A., Hsieh, R., O’Connell, J.P.: Computer Calculations for Multicomponent Vapor-Liquid and Liquid–Liquid Equilibria. Prentice Hall, Englewood Cliffs (1980)Google Scholar
  18. 18.
    Orchillés, A.V., Miguel, P.J., Vercher, E., Martínez-Andreu, A.: Isobaric vapor–liquid equilibria for methyl acetate + methanol + 1-ethyl-3-methylimidazolium trifluoromethanesulfonate at 100 kPa. J. Chem. Eng. Data 52, 915–920 (2007)CrossRefGoogle Scholar
  19. 19.
    Lepori, L., Matteoli, E., Bernazzani, L., Ceccanti, N., Conti, G., Gianni, P., Mollica, V., Tinè, M.R.: Isothermal vapour/liquid equilibria of binary mixtures with dibutyl ether at 298.15 K. Phys. Chem. Chem. Phys. 2, 4837–4842 (2000)CrossRefGoogle Scholar
  20. 20.
    Chen, Y., Wang, H., Tang, Y.Y., Zeng, J.: Ternary (liquid + liquid) equilibria for (water + 2-propanol + α-pinene, or β-pinene) mixtures at four temperatures. J. Chem. Thermodyn. 51, 144–149 (2012)CrossRefGoogle Scholar
  21. 21.
    Nelder, J.A., Mead, R.A.: simplex method for function minimization. Comput. J. 7, 308–313 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryJinan UniversityGuangzhouPeople’s Republic of China

Personalised recommendations