Advertisement

Journal of Solution Chemistry

, Volume 47, Issue 8, pp 1309–1325 | Cite as

New Ionic Liquid Based on the CMPO Pattern for the Sequential Extraction of U(VI), Am(III) and Eu(III)

  • Dariia Ternova
  • Ali Ouadi
  • Valérie Mazan
  • Sylvia Georg
  • Maria Boltoeva
  • Vitaly Kalchenko
  • Stanislas Miroshnichenko
  • Isabelle Billard
  • Clotilde GaillardEmail author
Article

Abstract

Extraction of U(VI), Eu(III) and Am(III) has been performed from acidic aqueous solutions (HNO3, HClO4) into the ionic liquid [C4mim][Tf2N] in which a new extracting task-specific ionic liquid, based on the CMPO unit {namely 1-[3-[2-(octylphenylphosphoryl)acetamido]propyl]-3-methyl-1H-imidazol-3-ium bis(trifluoromethane)sulfonamide, hereafter noted OctPh-CMPO-IL}, was dissolved at low concentration (0.01 mol·L−1). EXAFS and UV–Vis spectroscopy measurements were performed to characterize the extracted species. The extraction of U(VI) is more efficient than the extraction of trivalent Am and Eu using this TSIL, for both acids and their concentration range. We obtained evidence that the metal ions are extracted as a solvate (UO2(OctPh-CMPO-IL)3) by a cation exchange mechanism. Nitrate or perchlorate ions do not play a direct role in the extraction by being part of the extracted complexes, but the replacement of nitric acid for perchloric acid entails a drop in the selectivity between U and Eu. However, our TSIL allows a sequential separation of U(VI) and Eu/Am(III) using the same HNO3 concentration and same nature of the organic phase, just by changing the ligand concentration.

Keywords

Ionic liquids Solvent extraction Uranyl Europium(III) Americium(III) Carbamoylmethylphosphine oxide 

Notes

Acknowledgements

The financial support of the CNRS/NASU agreement (reference: EDC 25196, Project # 135651) for this work is greatly appreciated. The EXAFS experiments have been supported by the European FP7 TALISMAN project, under contract with the European Commission. We acknowledge the ROBL staff for their assistance during EXAFS measurements. The authors thank Maurice Coppe, Dr. Lionel Allouche and Dr. Bruno Vincent (Institute of Chemistry, University of Strasbourg, France) for the NMR measurements.

Supplementary material

10953_2018_730_MOESM1_ESM.docx (71 kb)
Supplementary material 1 (DOCX 71 kb)

References

  1. 1.
    Horwitz, E.P., Kalina, D.C., Diamond, H., Vandegrift, G.F., Schulz, W.W.: The Truex process: a process for the extraction of the transuranic elements from nitric acid in wastes utilizing modified Purex solvent. Solv. Extr. Ion Exch. 3, 75–109 (1985)CrossRefGoogle Scholar
  2. 2.
    Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis. Wiley, Weinheim (2003)Google Scholar
  3. 3.
    Bara, J.E., Camper, D.E., Gin, D.L., Noble, R.D.: Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc. Chem. Res. 43, 152–159 (2010)CrossRefPubMedGoogle Scholar
  4. 4.
    Zhou, F., Liang, Y.M., Liu, W.M.: Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38, 2590–2599 (2009)CrossRefPubMedGoogle Scholar
  5. 5.
    Moniruzzaman, M., Nakashima, K., Kamiya, N., Goto, M.: Recent advances of enzymatic reactions in ionic liquids. Biochem. Eng. J. 48, 295–314 (2010)CrossRefGoogle Scholar
  6. 6.
    Kubisa, P.: Ionic liquids as solvents for polymerization processes—progress and challenges. Prog. Polym. Sci. 34, 1333–1347 (2009)CrossRefGoogle Scholar
  7. 7.
    Stoimenovski, J., Farlane, D.R.M., Bica, K., Rogers, R.D.: Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm. Res. 27, 521–526 (2010)CrossRefPubMedGoogle Scholar
  8. 8.
    Stojanovic, A., Keppler, B.K.: Ionic liquids as extracting agents for heavy metals. Sep. Sci. Technol. 47, 189–203 (2012)CrossRefGoogle Scholar
  9. 9.
    Takao, K., Bell, T.J., Ikeda, Y.: Actinide chemistry in ionic liquids. Inorg. Chem. 52, 3459–3472 (2013)CrossRefPubMedGoogle Scholar
  10. 10.
    Billard, I.: Ionic liquids: new hopes for efficient lanthanide/actinide extraction and separation? In: Bünzli, J.C.G., Percharsky, V.K. (eds.) Handbook on the Physics and Chemistry of Rare Earths, vol. 43. Elsevier, Amsterdam (2013)Google Scholar
  11. 11.
    Dai, S., Ju, Y.H., Barnes, C.E.: Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J. Chem. Soc. Dalton Trans. 8, 1201–1202 (1999)CrossRefGoogle Scholar
  12. 12.
    Mancini, M.V., Spreti, N., Profio, P.D., Germani, R.: Understanding mercury extraction mechanism in ionic liquids. Sep. Purif. Technol. 116, 294–299 (2013)CrossRefGoogle Scholar
  13. 13.
    Papaiconomou, N., Cointeaux, L., Chainet, E., Lojoiu, C., Billard, I.: Chem. Select. 1, 3892–3900 (2016)Google Scholar
  14. 14.
    Dietz, M.L., Stepinski, D.C.: Anion concentration-dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids. Talanta 75, 598–603 (2008)CrossRefPubMedGoogle Scholar
  15. 15.
    Gaillard, C., Boltoeva, M., Billard, I., Georg, S., Mazan, V., Ouadi, A., Ternova, D., Hennig, C.: New insights in the extraction mechanism of uranium(VI) by TBP from nitric acid solution into ionic liquid. ChemPhysChem 16, 2653–2662 (2015)CrossRefPubMedGoogle Scholar
  16. 16.
    Bell, J., Ikeda, Y.: The application of novel hydrophobic ionic liquids to the extraction of uranium(VI) from nitric acid medium and a determination of the uranyl complexes formed. Dalton Trans. 40, 10125–10130 (2011)CrossRefPubMedGoogle Scholar
  17. 17.
    Rout, A., Venkatesan, K.A., Srinivasan, T.G., Vasudeva Rao, P.R.: Extraction of americium(III) from nitric acid medium by CMPO–TBP extractants in ionic liquid diluent. Radiochim. Acta 97, 719–725 (2009)CrossRefGoogle Scholar
  18. 18.
    Rout, A., Venkatesan, K.A., Srinivasan, T.G., Vasudeva Rao, P.R.: Extraction and third phase formation behavior of Eu(III) in CMPO–TBP extractants present in room temperature ionic liquid. Sep. Purif. Technol. 76, 238–243 (2011)CrossRefGoogle Scholar
  19. 19.
    Sun, T.-X., Shen, X.-H., Chen, Q.-D.: Investigation of selective extraction of UO22+ from aqueous solution by CMPO and TBP in ionic liquids. Acta Phys. Chim. Sin. 31, 32–38 (2015)Google Scholar
  20. 20.
    Holbrey, J.D., Turner, M.B., Reichert, W.M., Rogers, R.D.: New ionic liquids containing an appended hydroxyl functionality from the atom-efficient, one-pot reaction of 1-methylimidazole and acid with propylene oxide. Green Chem. 5, 731–736 (2003)CrossRefGoogle Scholar
  21. 21.
    Kogelnig, D., Stojanovic, A., Galanski, M., Groessl, M., Jirsa, F., Krachler, R., Keppler, B.K.: Greener synthesis of new ammonium ionic liquids and their potential as extracting agents. Tetrahedron Lett. 49, 2782–2785 (2008)CrossRefGoogle Scholar
  22. 22.
    Mudring, A.-V., Tang, S.: Ionic liquids for lanthanide and actinide chemistry. Eur. J. Inorg. Chem. 18, 2569–2581 (2010)CrossRefGoogle Scholar
  23. 23.
    Messadi, A., Mohamadou, A., Boudesocque, S., Dupont, L., Guillon, E.: Task-specific ionic liquid with coordinating anion for heavy metal ion extraction: cation exchange versus ion-pair extraction. Sep. Purif. Technol. 107, 172–178 (2013)CrossRefGoogle Scholar
  24. 24.
    Egorov, V.M., Djigailo, D.I., Momotenko, D.S., Cheryshov, D.V., Torocheshnikova, I.I., Sirnova, S.V., Pletnev, I.V.: Task-specific ionic liquid trioctylmethylammonium salicylate as extraction solvent for transition metal ions. Talanta 80, 1177–1182 (2010)CrossRefPubMedGoogle Scholar
  25. 25.
    Meindersma, G.W., Sanchez, L.M.G., Hansmeier, A.R., Haan, A.B.D.: Application of task-specific ionic liquids for intensified separations. Monatsh. Chem. 138, 1125–1136 (2007)CrossRefGoogle Scholar
  26. 26.
    Ouadi, A., Klimchuk, O., Gaillard, C., Billard, I.: Solvent extraction of U(VI) by task specific ionic liquids bearing phosphoryl groups. Green Chem. 9, 1160–1162 (2007)CrossRefGoogle Scholar
  27. 27.
    Mohapatra, P., Kandwal, P., Iqbal, M., Huskens, J., Murali, M.S., Verboom, W.: A novel CMPO-functionalized task specific ionic liquid: synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes. Dalton Trans. 42, 4343–4347 (2013)CrossRefPubMedGoogle Scholar
  28. 28.
    Turanov, A.N., Karandashev, V.K., Artyushin, O.I., Sharova, E.V.: Extraction of U(VI), Th(IV) and lanthanides(III) from nitric acid solutions with CMPO-functionalized ionic liquid in molecular diluents. Solv. Extr. Ion Exch. 33, 540–554 (2015)CrossRefGoogle Scholar
  29. 29.
    Billard, I., Gaillard, C.: Actinide and lanthanide speciation in imidazolium-based ionic liquids. Radiochim. Acta 97, 355–359 (2009)CrossRefGoogle Scholar
  30. 30.
    Guillaumont, R., Fanghanel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., Rand, M.H.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Elsevier, Amsterdam (2003)Google Scholar
  31. 31.
    Gaillard, C., Mazan, V., Georg, S., Klimchuk, O., Sypula, M., Billard, I., Schurhammer, R., Wipff, G.: Acid extraction to a hydrophobic ionic liquid: the role of added tributylphosphate investigated by experiments and simulations. Phys. Chem. Chem. Phys. 14, 5187–5199 (2012)CrossRefPubMedGoogle Scholar
  32. 32.
    Chaumont, A., Klimchuk, O., Gaillard, C., Billard, I., Ouadi, A., Hennig, C., Wipff, G.: Perrhenate complexation by uranyl in traditional solvents and ionic liquids: a joint molecular dynamics and spectroscopic study. J. Phys. Chem. B 116, 3205–3219 (2012)CrossRefPubMedGoogle Scholar
  33. 33.
    Gaillard, C., Chaumont, A., Billard, I., Hennig, C., Ouadi, A., Georg, S., Wipff, G.: Competitive complexation of nitrates and chloride to uranyl in a room temperature ionic liquid. Inorg. Chem. 49, 6484–6494 (2010)CrossRefPubMedGoogle Scholar
  34. 34.
    Georg, S., Billard, I., Ouadi, A., Gaillard, C., Petitjean, L., Picquet, M., Solov’ev, V.: Determination of successive complexation constants in an ionic liquid: complexation of UO22+ with NO3 in C4-mimTf2N studied by UV–Vis spectroscopy. J. Phys. Chem. B 114, 4276–4282 (2010)CrossRefPubMedGoogle Scholar
  35. 35.
    Ravel, B., Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005)CrossRefGoogle Scholar
  36. 36.
    Newville, M., Ravel, B., Haskel, D., Rehr, J.J., Stern, A., Yacoby, Y.: Analysis of multiple-scattering XAFS data using theoretical standards. Phys. B 208–209, 154–156 (1995)CrossRefGoogle Scholar
  37. 37.
    Rehr, J.J., Albers, R.C.: Theorical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–623 (2000)CrossRefGoogle Scholar
  38. 38.
    Mazan, V., Billard, I., Papaiconomou, N.: Experimental connections between aqueous aqueous and aqueous ionic liquid biphasic systems. RSC Adv. 4, 13371–13384 (2014)CrossRefGoogle Scholar
  39. 39.
    Bonnaffé-Moity, M., Ouadi, A., Mazan, V., Miroshnichenko, S., Ternova, D., Georg, S., Sypula, M., Gaillard, C., Billard, I.: Comparison of uranyl extraction mechanisms in ionic liquid by use of malonamide or malonamide-functionalized ionic liquid. Dalton Trans. 41, 7526–7536 (2012)CrossRefPubMedGoogle Scholar
  40. 40.
    Giridhar, P., Venkatesan, K.A., Subramaniam, S., Srinivasan, T.G., Rao, P.R.V.: Extraction of uranium(VI) by 1.1 M tri-n-butyl/ionic liquid and the feasibility of recovery by direct electrodeposition from organic phase. J. Alloys Compd. 448, 104–108 (2008)CrossRefGoogle Scholar
  41. 41.
    Ouadi, A., Gadenne, B., Hesemann, P., Moreau, J.J.E., Billard, I., Gaillard, C., Mekki, S., Moutiers, G.: Task-specific ionic liquids bearing 2-hydroxybenzylamine units: synthesis and americium-extraction studies. Chem. Eur. J. 12, 3074–3081 (2006)CrossRefPubMedGoogle Scholar
  42. 42.
    Cocalia, V.A., Jensen, M.P., Holbrey, J.D., Spear, S.K., Stepinski, D.C., Rogers, R.D.: Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents. Dalton Trans. (2005).  https://doi.org/10.1039/B502016F CrossRefPubMedGoogle Scholar
  43. 43.
    Chaiko, D.J., Fredrickson, D.R., Reichley-Yinger, L., Vandegrift, G.F.: Thermodynamic modeling of chemical equilibria in metal extraction. In: Fifth Symposium on Separation Science and Technology for Energy Applications. Knoxville, Tennessee, pp. 1435–1453 (1987)Google Scholar
  44. 44.
    Gutowski, K.E., Broker, G.A., Willauer, H.D., Huddleston, J.G., Swatloski, R.P., Holbrey, J.D., Rogers, R.D.: Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J. Am. Chem. Soc. 125, 6632–6633 (2003)CrossRefPubMedGoogle Scholar
  45. 45.
    Ternova, D., Boltoeva, M., Cointeaux, L., Gaillard, C., Kalchenko, V., Mazan, V., Miroshnichenko, S., Mohapatra, P.K., Ouadi, A., Papaiconomou, N., Petrova, M., Billard, I.: Dramatic changes in crossed solubilities of ions induced by ligand addition in the biphasic system D2O/DNO3//[C1C4mim][Tf2N]: a phenomenological study. J. Phys. Chem. B 120, 7502–7511 (2016)CrossRefPubMedGoogle Scholar
  46. 46.
    Mathur, J.N., Murali, M.S., Natarajan, P.R.: Extraction of actinides and fission products by octyl(phenyl)-N,N-diisobutylcarbamoylmethyl-phosphine oxide from nitric acid media. Talanta 39, 493–496 (1992)CrossRefPubMedGoogle Scholar
  47. 47.
    Schulz, W.W., Horwitz, E.P.: The Truex process and the management of liquid Tru Uwaste. Separ. Sci. Technol. 23, 1191–1210 (1988)CrossRefGoogle Scholar
  48. 48.
    Wu, Q., Sun, T., Meng, X., Chen, J., Xu, C.: Thermodynamic insight into solvation and complexation behavior of U(VI) in ionic liquid: binding of CMPO with U(VI) studied by optical spectroscopy and calorimetry. Inorg. Chem. 56, 3014–3021 (2017)CrossRefPubMedGoogle Scholar
  49. 49.
    Sémon, L., Boehme, C., Billard, I., Hennig, C., Lützenkirchen, K., Reich, T., Rossberg, A., Rossini, I., Wipff, G.: Do perchlorate and triflate anions bind to the uranyl cation in an acidic aqueous medium? A combined EXAFS and quantum mechanical investigation. Chem. Phys. Chem. 2, 591–598 (2001)CrossRefPubMedGoogle Scholar
  50. 50.
    Ruas, A., Pochon, P., Simonin, J.-P., Moisy, P.: Nitric acid: modeling osmotic coefficients and acid-base dissociation using the BIMSA theory. Dalton Trans. 39, 10148–10153 (2010)CrossRefPubMedGoogle Scholar
  51. 51.
    Sengupta, A., Ali, S.M., Shenoy, K.T.: Understanding the complexation of the Eu3+ ion with TODGA, CMPO, TOPO and DMDBTDMA: extraction, luminescene and theoretical investigation. Polyedron 117, 612–622 (2016)CrossRefGoogle Scholar
  52. 52.
    Sengupta, A., Thulasidas, S.K., Adya, V.C., Mohapatra, P.K., Godbole, S.V., Manchanda, V.K.: Purification of americium from assorted analytical waste in hydrochloric acid medium. J. Radioanal. Nucl. Chem. 292, 1017–1023 (2012)CrossRefGoogle Scholar
  53. 53.
    Sengupta, A., Murali, M.S., Thulasidas, S.K., Mohapatra, P.K.: Solvent system containing CMPO as the extractant in a diluent mixture containing n-dodecane and isodecanol for actinide partitioning runs. Hydrometallurgy 147–148, 228–233 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dariia Ternova
    • 1
    • 2
    • 3
  • Ali Ouadi
    • 1
    • 2
  • Valérie Mazan
    • 1
    • 2
  • Sylvia Georg
    • 1
    • 2
  • Maria Boltoeva
    • 1
    • 2
  • Vitaly Kalchenko
    • 3
  • Stanislas Miroshnichenko
    • 3
  • Isabelle Billard
    • 4
    • 5
  • Clotilde Gaillard
    • 6
    Email author
  1. 1.Université de Strasbourg, IPHCStrasbourgFrance
  2. 2.CNRS, UMR7178StrasbourgFrance
  3. 3.Institute of Organic ChemistryNASUKievUkraine
  4. 4.CNRS, LEPMISaint Martin d’HèresFrance
  5. 5.Université Grenoble Alpes, LEPMIGrenobleFrance
  6. 6.IPNL, CNRS, Université de Lyon, UMR 5822VilleurbanneFrance

Personalised recommendations