Advertisement

Journal of Solution Chemistry

, Volume 47, Issue 1, pp 107–126 | Cite as

A Comparative Investigation of Mixing Rules for Property Prediction in Multicomponent Electrolyte Solutions

  • Darren Rowland
  • Peter M. May
Article
  • 162 Downloads

Abstract

A mathematical technique is developed to investigate physicochemical property prediction of solution mixtures from the corresponding properties of the pure dissolved systems, as is often expressed in empirical ‘mixing rules’ such as those of Young and of Zdanovskii. A systematic method to distinguish between the inherent characteristics of such rules is needed because experimental studies have proved indecisive. Sound mixing rules must be found to support current efforts in thermodynamic modelling where conventional approaches like the Pitzer equations lack robustness. Density differences relative to pure water, osmotic coefficients and heat capacities are investigated with mixtures including {NaCl + MgCl2}(aq) and {NaCl + Na2SO4}(aq) as specific examples representing common-anion and common-cation asymmetric strong electrolyte solutions respectively. Water activity curves for hydrochloric acid and the alkali metal chloride solutions are also considered. The results confirm that, at the present state of the art, differences between mixing rules are for the most part insignificant at 25 °C, being about the same or less than would be expected from experimental uncertainty. As the predicted differences are even smaller at higher temperature, it can be posited that all reasonably well-established mixing rules in the literature will give approximately equivalent and satisfactory predictions of solution properties under superambient conditions. This is particularly important since the effects of temperature on the magnitude of ternary interactions are not well known from experiment.

Keywords

Aqueous electrolyte Mixing rules Density Water activity 

References

  1. 1.
    Young, T.F., Smith, M.B.: Thermodynamic properties of mixtures of electrolytes in aqueous solutions. J. Phys. Chem. 58, 716–724 (1954)CrossRefGoogle Scholar
  2. 2.
    Zdanovskii, A.B.: Trudy Solvanoi Laboratorii (Trans. Salt Lab.) No. 6. Akad. Nauk. SSSR (1936)Google Scholar
  3. 3.
    Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd rev. edn. Dover Publications, N.Y., USA (previously Butterworth & Co., London) (1959)Google Scholar
  4. 4.
    May, P.M., Rowland, D.: Thermodynamic modeling of aqueous electrolyte systems: current status. J. Chem. Eng. Data 62, 2481–2495 (2017)CrossRefGoogle Scholar
  5. 5.
    Pitzer, K.S.: Ion interaction approach: theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., pp. 75–153. CRC Press, Boca Raton (1991)Google Scholar
  6. 6.
    Scatchard, G.: Osmotic coefficients and activity coefficients in mixed electrolyte solutions. J. Am. Chem. Soc. 83, 2636–2642 (1961)CrossRefGoogle Scholar
  7. 7.
    Scatchard, G.: Excess free energy and related properties of solutions containing electrolytes. J. Am. Chem. Soc. 90, 3124–3127 (1968)CrossRefGoogle Scholar
  8. 8.
    Scatchard, G., Rush, R.M., Johnson Jr., J.S.: Osmotic and activity coefficients for binary mixtures of sodium chloride, sodium sulfate, magnesium sulfate and magnesium chloride in water at 25 °C. III. Treatment with the ions as components. J. Phys. Chem. 74, 3786–3796 (1970)CrossRefGoogle Scholar
  9. 9.
    Pitzer, K.S., Kim, J.J.: Thermodynamics of Electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96, 5701–5707 (1974)CrossRefGoogle Scholar
  10. 10.
    Macaskill, J.B., White, D.R.J., Robinson, R.A., Bates, R.G.: Isopiestic measurements on aqueous mixtures of sodium chloride and strontium chloride. J. Solution Chem. 7, 339–347 (1978)CrossRefGoogle Scholar
  11. 11.
    Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous mixtures of NaCl and SrCl2 at 25 °C. J. Chem. Eng. Data 27, 342–346 (1982)CrossRefGoogle Scholar
  12. 12.
    Pavićević, V., Ninković, R., Todorović, M., Miladinović, J.: Osmotic and activity coefficients of {\(y\)NaH2PO4+\((1-y)\)Na2SO4}(aq) at the temperature 298.15 K. Fluid Phase Equilib. 164, 275–284 (1999)CrossRefGoogle Scholar
  13. 13.
    Marjanović, V., Ninković, R., Miladinović, J., Todorović, M., Pavićević, V.: Osmotic and activity coefficients of {\(y\)Na2SO4 + \((1-y)\)ZnSO4}(aq) at \(T\) = 298.15 K. J. Chem. Thermodyn. 37, 111–116 (2005)CrossRefGoogle Scholar
  14. 14.
    Sirbu, F., Iulian, O., Ion, A.C., Ion, I.: Activity coefficients of electrolytes in the NaCl + Na2SO4 + H2O ternary system from potential difference measurements at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 56, 4935–4943 (2011)CrossRefGoogle Scholar
  15. 15.
    Zemaitis Jr., J.F., Clark, D.M., Rafal, M., Scrivner, N.C.: Handbook of Aqueous Electrolyte Thermodynamics. Wiley, New York (1986)CrossRefGoogle Scholar
  16. 16.
    Miller, D.G.: Activity coefficient derivatives of ternary systems based on Scatchard’s neutral electrolyte description. J. Solution Chem. 37, 365–375 (2008)CrossRefGoogle Scholar
  17. 17.
    Monnin, C.: An ion interaction model for the volumetric properties of natural waters: density of the solution and partial molal volumes of electrolytes to high concentrations at 25 °C. Geochim. Cosmochim. Acta 53, 1177–1188 (1989)CrossRefGoogle Scholar
  18. 18.
    Downes, C.J., Pitzer, K.S.: Thermodynamics of electrolytes. binary mixtures formed from aqueous NaCl, Na2SO4, CuCl2, and CuSO4 at 25 °C. J. Solution Chem. 5, 389–398 (1976)CrossRefGoogle Scholar
  19. 19.
    Conti, G., Gianni, P., Tine, M.R.: Heat capacities of aqueous mixed electrolyte solutions at high temperatures. Application of the Pitzer equations to the mixed system K-Na-Cl-SO4. J. Solution Chem. 15, 349–362 (1986)CrossRefGoogle Scholar
  20. 20.
    Rowland, D., Königsberger, E., Hefter, G., May, P.M.: Aqueous electrolyte solution modelling: some limitations of the Pitzer equations. Appl. Geochem. 55, 170–183 (2015)CrossRefGoogle Scholar
  21. 21.
    Stearn, A.E.: Ionic equilibria of strong electrolytes. J. Am. Chem. Soc. 44, 670–678 (1922)CrossRefGoogle Scholar
  22. 22.
    Ruby, C.E., Kawai, J.: The densities, equivalent conductances and relative viscosities at 25 °C, of solutions of hydrochloric acid, potassium chloride and sodium chloride, and of their binary and ternary mixtures of constant chloride-ion-constituent content. J. Am. Chem. Soc. 48, 1119–1128 (1926)CrossRefGoogle Scholar
  23. 23.
    Rowland, D., May, P.M.: JESS, a Joint Expert Speciation System—V: Approaching thermodynamic property prediction for multicomponent concentrated aqueous electrolyte solutions. Talanta 81, 149–155 (2010)CrossRefGoogle Scholar
  24. 24.
    Rowland, D., May, P.M.: An investigation of Zdanovskii’s rule for predicting the water activity of multicomponent aqueous strong electrolyte solutions. J. Chem. Eng. Data 57, 2589–2602 (2012)CrossRefGoogle Scholar
  25. 25.
    Chan, C.K., Liang, Z., Zheng, J., Clegg, S.L., Brimblecombe, P.: Thermodynamic properties of aqueous aerosols to high supersaturation: I–Measurements of water activity of the system Na\(^+\)-Cl\(^-\)-NO\(_3^-\)-SO\(_4^{2-}\)-H2O at 298.15 K. Aerosol Sci. Technol. 27, 324–344 (1997)CrossRefGoogle Scholar
  26. 26.
    Clegg, S.L., Seinfeld, J.H.: Thermodynamic models of aqueous solutions containing inorganic electrolytes and dicarboxylic acids at 298.15 K. 2. Systems including dissociation equilibria. J. Phys. Chem. A110, 5718–5734 (2006)CrossRefGoogle Scholar
  27. 27.
    Liu, Z., Liu, Y., Hu, Y., Zeng, P., Fan, S., Liang, D.-Q.: Prediction of activity coefficients for mixed aqueous electrolyte solutions from the data of their binary solutions. Chin. J. Chem. Eng. 14, 494–504 (2006)CrossRefGoogle Scholar
  28. 28.
    He, M., Wang, Z.-C.: Interactions in the quaternary systems H2O-Y(NO3)3-La(NO3)3-Pr(NO3)3, H2O-Y(NO3)3-La(NO3)3-Nd(NO3)3 and H2O-Y(NO3)3-Pr(NO3)3-Nd(NO3)3 to very high concentrations. J. Solution Chem. 35, 1607–1619 (2006)CrossRefGoogle Scholar
  29. 29.
    El Guendouzi, M., Azougen, R.: Thermodynamic properties of aqueous mixed ternaries {\(y\)NH4Cl + \((1-y)\)BaCl2}(aq) and {\(y\)NH4Cl + \((1-y)\)CaCl2}(aq) at 298.15 K. CALPHAD 31, 201–208 (2007)CrossRefGoogle Scholar
  30. 30.
    Miladinović, J., Ninković, R., Todorović, M.: Osmotic and activity coefficients of {\(y\)KCl + \((1-y)\)MgCl2}(aq) at \(T\) = 298.15 K. J. Solution Chem. 36, 1401–1419 (2007)CrossRefGoogle Scholar
  31. 31.
    He, M., Zha, Q., Li, B., Wang, Z.-C.: Isopiestic determination of unsaturated and NaNO3-saturated H2O + NaNO3 + Y(NO3)3 + La(NO3)3 systems and representation with the Pitzer model, Zdanovskii–Stokes–Robinson Rule, and ideal-like solution model. J. Chem. Eng. Data 56, 3800–3806 (2011)CrossRefGoogle Scholar
  32. 32.
    Mahapatra, P., Bhattacharyya, M.M., Sengupta, M.: The Pitzer formalism vis-à-vis the mixture rule for the estimation of apparent molal volumes of aqueous NaCl-KCl, NaCl-KBr and NaCl-K2SO4 mixtures at 298.15 K. Bull. Chem. Soc. Jpn. 64, 2444–2448 (1991)CrossRefGoogle Scholar
  33. 33.
    Saluja, P.P.S., Jobe, D.J., LeBlanc, J.C., Lemire, R.J.: Apparent molar heat capacities and volumes of mixed electrolytes [NaCl(aq) + CaCl2(aq)], [NaCl(aq) + MgCl2(aq)], and [CaCl2(aq) + MgCl2(aq)]. J. Chem. Eng. Data 40, 398–406 (1995)CrossRefGoogle Scholar
  34. 34.
    Correa, H.A., Vega, R.E.: Analysis of several methods to determine the activity of water in solutions of strong electrolytes. Can. J. Chem. Eng. 67, 839–845 (1989)CrossRefGoogle Scholar
  35. 35.
    Patwardhan, V.S., Kumar, A.: Thermodynamic properties of aqueous solutions of mixed electrolytes: a new mixing rule. AIChE J. 39, 711–714 (1993)CrossRefGoogle Scholar
  36. 36.
    Hu, Y.-F.: New predictive equations for the specific and apparent molar heat capacities of multicomponent aqueous solutions conforming to the linear isopiestic relation. Bull. Chem. Soc. Jpn. 74, 47–52 (2001)CrossRefGoogle Scholar
  37. 37.
    Iulian, O., Sîrbu, F., Stoicescu, C.: Density and apparent molar volume prediction in some ternary electrolyte solutions. Rev. Roum. Chim. 53, 1125–1129 (2008)Google Scholar
  38. 38.
    Chen, H., Sangster, J., Teng, T.T., Lenzi, F.: A general method of predicting the water activity of ternary aqueous solutions from binary data. Can. J. Chem. Eng. 51, 234–241 (1973)CrossRefGoogle Scholar
  39. 39.
    Teng, T.-T., Lenzi, F.: Density prediction of multicomponent aqueous solutions from binary data. Can. J. Chem. Eng. 53, 673–676 (1975)CrossRefGoogle Scholar
  40. 40.
    Millero, F.J., Connaughton, L.M., Vinokurova, F., Chetirkin, P.V.: PVT properties of concentrated aqueous electrolytes. III. Volume changes for mixing the major sea salts at \(I\) = 1.0 and 3.0 at 25 °C. J. Solution Chem. 14, 837–851 (1985)CrossRefGoogle Scholar
  41. 41.
    Miller, D.G.: The connection between Young’s rule for apparent molar volumes and a Young’s rule for density. J. Solution Chem. 24, 967–987 (1995)CrossRefGoogle Scholar
  42. 42.
    Hu, Y.-F.: An empirical approach for estimating the density of multicomponent aqueous solutions obeying the linear isopiestic relation. J. Solution Chem. 29, 1229–1236 (2000)CrossRefGoogle Scholar
  43. 43.
    Teng, T.T.: Density prediction for aqueous multicomponent solutions obeying isopiestic relation and isopycnotic mixing rule. J. Solution Chem. 32, 765–780 (2003)CrossRefGoogle Scholar
  44. 44.
    Dinane, A.: Thermodynamic properties of aqueous mixtures LiCl + KCl + NH4Cl + H2O. Water activity and osmotic and activity coefficients at 298.15 K. J. Chem. Eng. Data 54, 574–580 (2009)CrossRefGoogle Scholar
  45. 45.
    Yang, J.-Z., Liu, J.-G., Tong, J., Guan, W., Fang, D.-W., Yan, C.-W.: Systematic study of the simple predictive approaches for thermodynamic and transport properties of multicomponent solutions. Ind. Eng. Chem. Res. 49, 7671–7677 (2010)CrossRefGoogle Scholar
  46. 46.
    Hovey, J.K., Hepler, L.G., Tremaine, P.R.: Thermodynamics of aqueous aluminate ion: standard partial molar heat capacities and volumes of Al(OH)\(_4^-\)(aq) from 10 to 55 °C. J. Phys. Chem. 92, 1323–1332 (1988)CrossRefGoogle Scholar
  47. 47.
    Patwardhan, V.S., Kumar, A.: A unified approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions. Part II. Volume, thermal and other properties. AIChE J. 32, 1429–1438 (1986)CrossRefGoogle Scholar
  48. 48.
    Millero, F.J.: Seawater—a test of multicomponent electrolyte solution theories. I. The apparent equivalent volume, expansibility, and compressibility of artificial seawater. J. Solution Chem. 2, 1–22 (1973)CrossRefGoogle Scholar
  49. 49.
    Leung, W.H., Millero, F.J.: The enthalpy of dilution of some 1–1 and 2–1 electrolytes in aqueous solution. J. Chem. Thermodyn. 7, 1067–1078 (1975)CrossRefGoogle Scholar
  50. 50.
    Duer, W.C., Leung, W.H., Oglesby, G.B., Millero, F.J.: Seawater—a test of multicomponent electrolyte solution theories. II. Enthalpy of mixing and dilution of the major sea salts. J. Solution Chem. 5, 509–528 (1976)CrossRefGoogle Scholar
  51. 51.
    Kumar, A., Atkinson, G., Howell, R.D.: Thermodynamics of concentrated electrolyte mixtures. II. Densities and compressibilities of aqueous NaCl-CaCl2 at 25 °C. J. Solution Chem. 11, 857–870 (1982)CrossRefGoogle Scholar
  52. 52.
    Millero, F.J., Chen, C.A.: The speed of sound in mixtures of the major sea salts. A test of Young’s rule for adiabatic PVT properties. J. Solution Chem. 14, 301–310 (1985)Google Scholar
  53. 53.
    Stokes, R.H., Robinson, R.A.: Interactions in aqueous nonelectrolyte solutions. I. Solute–solvent equilibria. J. Phys. Chem. 70, 2126–2131 (1966)CrossRefGoogle Scholar
  54. 54.
    Wang, Z.-C.: Relationship among the Raoult Law, Zdanovskii–Stokes–Robinson rule, and two extended Zdanovskii–Stokes–Robinson rules of Wang. J. Chem. Eng. Data 54, 187–192 (2009)CrossRefGoogle Scholar
  55. 55.
    Robinson, R.A., Bower, V.E.: An additivity rule for the vapor pressure lowering of aqueous solutions. J. Res. Natl. Bur. Stand. 69A, 365–367 (1965)CrossRefGoogle Scholar
  56. 56.
    Teruya, K., Hosako, S., Nakano, T., Nakamori, I.: Estimation of water activities in multicomponent electrolyte solutions. J. Chem. Eng. Jpn. 9, 1–5 (1976)CrossRefGoogle Scholar
  57. 57.
    Meissner, H.P., Kusik, C.L.: Aqueous solutions of two or more strong electrolytes vapor pressures and solubilities. Ind. Eng. Chem. Process Des. Dev. 12, 205–208 (1973)CrossRefGoogle Scholar
  58. 58.
    Patwardhan, V.S., Kumar, A.: A unified approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions. Vapour pressure and heat of vaporisation. AIChE J. 32, 1419–1428 (1986)CrossRefGoogle Scholar
  59. 59.
    Allakhverdov, G.R.: Calculation of the osmotic coefficient of a multicomponent solution. Dokl. Phys. Chem. 376, 31–33 (2001)CrossRefGoogle Scholar
  60. 60.
    Lietzke, M.H., Stoughton, R.W.: A simple method for predicting the osmotic coefficient of aqueous solutions containing more than one electrolyte. J. Inorg. Nucl. Chem. 36, 1315–1317 (1974)CrossRefGoogle Scholar
  61. 61.
    Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous mixtures of sodium chloride and magnesium chloride at 25 °C. J. Chem. Eng. Data 32, 85–92 (1987)CrossRefGoogle Scholar
  62. 62.
    Sangster, J., Lenzi, F.: On the choice of methods for the prediction of the water-activity and activity coefficient for multicomponent aqueous solutions. Can. J. Chem. Eng. 52, 392–396 (1974)CrossRefGoogle Scholar
  63. 63.
    Reilly, P.J., Wood, R.H., Robinson, R.A.: The prediction of osmotic and activity coefficients in mixed-electrolyte solutions. J. Phys. Chem. 75, 1305–1314 (1971)CrossRefGoogle Scholar
  64. 64.
    Millero, F.J., Lampreia, M.I.: The PVT properties of concentrated aqueous electrolytes. IV. Changes in the compressibilities of mixing the major sea salts at 25 °C. J. Solution Chem. 14, 853–864 (1985)CrossRefGoogle Scholar
  65. 65.
    Millero, F.J., Sotolongo, S.: PVT properties of concentrated aqueous electrolytes. 7. The volumes of mixing of the reciprocal salt pairs KCl, K2SO4, NaCl, and Na2SO4 at 25 °C and \(I\) = 1.5 m. J. Chem. Eng. Data 31, 470–472 (1986)CrossRefGoogle Scholar
  66. 66.
    Dedick, E.A., Hershey, J.P., Sotolongo, S., Stade, D.J., Millero, F.J.: The PVT properties of concentrated aqueous electrolytes. IX. The volume properties of KCl and K2SO4 and their mixtures with NaCl and Na2SO4 as a function of temperature. J. Solution Chem. 19, 353–374 (1990)CrossRefGoogle Scholar
  67. 67.
    May, P.M., Rowland, D., Königsberger, E., Hefter, G.: JESS, a Joint Expert Speciation System—IV: A large database of aqueous solution physicochemical properties with an automatic means of achieving thermodynamic consistency. Talanta 81, 142–148 (2010)CrossRefGoogle Scholar
  68. 68.
    May, P.M., Rowland, D., Hefter, G., Königsberger, E.: A generic and updatable Pitzer characterization of aqueous binary electrolyte solutions at 1 bar and 25 °C. J. Chem. Eng. Data 56, 5066–5077 (2011)CrossRefGoogle Scholar
  69. 69.
    Rowland, D., May, P.M.: Comparison of the Pitzer and Hückel equation frameworks for activity coefficients, osmotic coefficients, and apparent molar relative enthalpies, heat capacities, and volumes of binary aqueous strong electrolyte solutions at 25 °C. J. Chem. Eng. Data 60, 2090–2097 (2015)CrossRefGoogle Scholar
  70. 70.
    Hu, Y.-F., Fan, S.-S., Liang, D.-Q.: The semi-ideal solution theory for mixed ionic solutions at-solid liquid–vapor equilibrium. J. Phys. Chem. A 110, 4276–4284 (2006)CrossRefGoogle Scholar
  71. 71.
    Hu, Y.-F., Zhang, X.-M., Li, J.-G., Liang, Q.-Q.: Semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions. J. Phys. Chem. B112, 15376–15381 (2008)CrossRefGoogle Scholar
  72. 72.
    Hu, Y.-F., Zhang, X.-M., Jin, C.-W., Peng, X.-M.: The semi-ideal solution theory. 3. Extension to viscosity of multicomponent aqueous solutions. J. Solution Chem. 39, 1828–1844 (2010)CrossRefGoogle Scholar
  73. 73.
    Hu, Y.-F., Peng, X.-M., Jin, C.-W., Liang, Y.-G., Chu, H.-D., Zhang, X.-M.: The semi-ideal solution theory. 4. Applications to the densities and electrical conductivities of mixed electrolyte and nonelectrolyte solutions. J. Solution Chem. 39, 1597–1608 (2010)CrossRefGoogle Scholar
  74. 74.
    He, M., Wang, Z.-C., Gong, L.-D., Xia, P.-M.: Isopiestic determination of unsaturated and NH4NO3-saturated H2O + NH4NO3 + Y(NO3)3 + Nd(NO3)3 system and representation with the Pitzer model, Zdanovskii–Stokes–Robinson rule, and ideal-like solution model. J. Chem. Eng. Data 54, 511–516 (2009)CrossRefGoogle Scholar
  75. 75.
    Semmler, M., Luo, B.P., Koop, T.: Densities of liquid H\(^+\)/NH\(_4^+\)/SO\(_4^{2-}\)/NO\(_3^-\)/H2O solutions at tropospheric temperatures. Atmos. Environ. 40, 467–483 (2006)CrossRefGoogle Scholar
  76. 76.
    Saluja, P.P.S., Lemire, R.J., LeBlanc, J.C.: High-temperature thermodynamics of aqueous alkali-metal salts. J. Chem. Thermodyn. 24, 181–203 (1992)CrossRefGoogle Scholar
  77. 77.
    Rard, J.A., Platford, R.F.: Experimental methods: isopiestic. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., pp. 209–277. CRC Press, Boca Raton (1991)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry, School of Engineering and Information TechnologyMurdoch UniversityMurdochAustralia
  2. 2.Fluid Science & Resources Division, ARC Training Centre for LNG FuturesThe University of Western AustraliaCrawleyAustralia

Personalised recommendations