Advertisement

Journal of Solution Chemistry

, Volume 47, Issue 1, pp 80–91 | Cite as

Investigation of the Binding Properties of the Cosmetic Peptide Argireline and Its Derivatives Towards Copper(II) Ions

  • Joanna MakowskaEmail author
  • Aleksandra Tesmar
  • Dariusz Wyrzykowski
  • Lech Chmurzyński
Article
  • 178 Downloads

Abstract

Isothermal titration calorimetry, potentiometric titration and circular dichroism spectroscopy were used to study the interaction of copper(II) ions with Argireline (Ac-Glu-Glu-Met-Gln-Arg-Arg-NH2) and three of its point mutation derivatives: Glu-Ala-Met-Gln-Arg-Arg-NH2 (AN1), Glu-Ala-His-Gln-Arg-Arg-NH2 (AN2) and Glu-Ala-Met-Gln-Ala-Arg-NH2 (AN3). Under the experimental conditions (20 mmol·L−1 Caco solution, pH 6, 298.15 K), copper(II) ions form 1:1 complexes with the peptides Argireline, AN1, and AN2. The complexation reactions are entropy-driven processes. The stability of the resulting complexes increases in the order log10KCu(AN1) < log10KCu(Argireline) < log10KCu(AN2). The relationship between the point mutations of Argireline and the binding properties of these peptides towards copper(II) ions is discussed.

Keywords

Argireline ITC Copper(II) ions Complexation process Chemical synthesis CD spectroscopy 

References

  1. 1.
    Blanes-Mira, C., Clementey, J., Jodasy, G., Gil, A., Fernandez-Ballester, G., Ponsatiy, B., Gutierrezz, L., Perez-Paya, E., Ferrer-Montiel, A.A.: A synthetic hexapeptide (Argireline) with antiwrinkle activity. Int. J. Cosmet. Sci. 24, 303–310 (2002)CrossRefGoogle Scholar
  2. 2.
    Kerscher, M., Buntrock, H.: Update on cosmeceuticals. J. Dtsch. Dermatol. Ges. 9, 314–327 (2011)Google Scholar
  3. 3.
    Grosicki, M., Latacz, G., Szopa, A., Cukier, A., Kieć-Kononowicz, K.: The study of cellular cytotoxicity of Argireline—an anti-aging peptide. Acta Biochem. Pol. 61, 29–32 (2014)Google Scholar
  4. 4.
    Kozlowski, H., Bal, W., Dyba, M., Kowalik-Jankowska, T.: Specific structure–stability relations in metallopeptides. Coord. Chem. Rev. 184, 319–346 (1999)CrossRefGoogle Scholar
  5. 5.
    Waggoner, D.J., Bartnikas, T.B., Gitlin, J.D.: The role of copper in neurodegenerative disease. Neurobiol. Dis. 6, 221–230 (1999)CrossRefGoogle Scholar
  6. 6.
    Kozlowski, H., Janicka-Klos, A., Stanczak, P., Valensin, D., Valensin, G., Kulon, K.: Specificity in the Cu2+ interactions with prion protein fragments and related His-rich peptides from mammals to fishes. Coord. Chem. Rev. 252, 1069–1078 (2008)CrossRefGoogle Scholar
  7. 7.
    Rowinska-Zyrek, M., Potocki, S., Remelli, M., Valensin, D.: Specific metal ion binding sites in unstructured regions of proteins. Coord. Chem. Rev. 257, 2625–2638 (2013)CrossRefGoogle Scholar
  8. 8.
    de Ricco, R., Potocki, S., Kozłowski, H., Valensin, D.: NMR investigations of metal interactions with unstructured soluble protein domains. Coord. Chem. Rev. 269, 1–12 (2014)CrossRefGoogle Scholar
  9. 9.
    Pizzanelli, S., Forte, C., Pinzino, C., Magrì, A., La Mendola, D.: Copper(II) complexes with peptides based on the second cell binding site of fibronectin: metal coordination and ligand exchange kinetics. Phys. Chem. Chem. Phys. 18, 3982–3994 (2016)CrossRefGoogle Scholar
  10. 10.
    Draelos, Z.D.: Cosmeceuticals. In: Alam, M., Pongprutthipan, M. (eds.) Body Rejuvenation, 1st edn. Springer, New York (2010)Google Scholar
  11. 11.
    Reszko, A.E., Berson, D., Lupo, M.: Cosmeceuticals: practical applications. Clin. Dermatol. 27, 401–416 (2009)CrossRefGoogle Scholar
  12. 12.
    Robertson, W.: Wilson’s disease. Arch. Neurol. 57, 276–277 (2000)CrossRefGoogle Scholar
  13. 13.
    Kozłowski, H., Kowalik-Jankowska, T., Jezowska-Bojczuk, M.: Chemical and biological aspects of Cu2+ interactions with peptides and aminoglycosides. Coord. Chem. Rev. 249, 2323–2334 (2005)CrossRefGoogle Scholar
  14. 14.
    Makowska, J., Baginska, K., Skwierawska, A., Liwo, A., Chmurzynski, L., Scheraga, H.A.: Influence of charge and size of terminal amino-acid residues on local conformational states and shape of alanine-based peptides. Biopolymers 90, 772–782 (2008)CrossRefGoogle Scholar
  15. 15.
    Wyrzykowski, D., Zarzeczańska, D., Jacewicz, D., Chmurzyński, L.: Investigation of copper(II) complexation by glycylglycine using isothermal titration calorimetry. J. Therm. Anal. Calorim. 105, 1043–1047 (2011)CrossRefGoogle Scholar
  16. 16.
    Wyrzykowski, D., Pilarski, B., Jacewicz, D., Chmurzyński, L.: Investigation of metal–buffer interactions using isothermal titration calorimetry. J. Therm. Anal. Calorim. 111, 1829–1836 (2013)CrossRefGoogle Scholar
  17. 17.
    Kostrowicki, J., Liwo, A.: A general method for the determination of the stoichiometry of unknown species in multicomponent systems from physicochemical measurements. Comput. Chem. 11, 195–210 (1987)CrossRefGoogle Scholar
  18. 18.
    Kostrowicki, J., Liwo, A.: A determination of equilibrium parameters by minimization of an extended sum of squares. Talanta 37, 645–650 (1990)CrossRefGoogle Scholar
  19. 19.
    Fasman, G.D.: Circular Dichroism and the Conformational Analysis of Biomolecules, p. 738. Plenum Press, New York (1996)CrossRefGoogle Scholar
  20. 20.
    Greenfield, N.J.: Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal. Biochem. 235, 1–10 (1996)CrossRefGoogle Scholar
  21. 21.
    Wyrzykowski, D., Chmurzyński, L.: Thermodynamics of citrate complexation with Mn2+, Co2+, Ni2+ and Zn2+ ions. J. Therm. Anal. Calorim. 102, 61–64 (2010)CrossRefGoogle Scholar
  22. 22.
    Tesmar, A., Wyrzykowski, D., Jacewicz, D., Żamojć, K., Pranczk, J., Chmurzyński, L.: Buffer contribution to formation enthalpy of copper(II)–bicine complex determined by isothermal titration calorimetry method. J. Therm. Anal. Calorim. 126, 97–102 (2016)CrossRefGoogle Scholar
  23. 23.
    Barszcz, B.: Coordination properties of didentate N, O heterocyclic alcohols and aldehydes towards Cu(II), Co(II), Zn(II) and Cd(II) ions in the solid state and aqueous solution. Coord. Chem. Rev. 249, 2259–2276 (2005)CrossRefGoogle Scholar
  24. 24.
    Makowska, J., Bagińska, K., Makowski, M., Jagielska, A., Liwo, A., Kasprzykowski, F., Chmurzyński, L., Scheraga, H.A.: Assessment of two theoretical methods to estimate potentiometric titration curves of peptides: comparison with experiment. J. Phys. Chem. B 110, 4451–4458 (2006)CrossRefGoogle Scholar
  25. 25.
    Rodante, F., Fantauzzi, F., Catalani, G.: Thermodynamics of dipeptides in water. VI. Calorimetric determination of enthalpy changes of dissociation processes in water of the free α-carboxyl and α-amino groups in a series of dipeptides. Comparison of these processes for two series of dipeptides. Thermochim. Acta 311, 43–49 (1998)CrossRefGoogle Scholar
  26. 26.
    Cohn, E.J., Edsall, J.T.: Proteins, Amino Acids and Peptides as Ions and Dipolar Ions. Reinhold Publishing Corporation, New York (1942)Google Scholar
  27. 27.
    Makowska, J., Bagińska, K., Liwo, A., Chmurzyński, L., Scheraga, H.A.: Influence of charge and size of terminal amino-acid residues on local conformational states and shape of alanine-based peptides. Biopolym. Pept. Sci. 90, 724–732 (2008)CrossRefGoogle Scholar
  28. 28.
    Hamborg, E.S., Versteeg, G.F.: Dissociation constants and thermodynamic properties of amines and alkanolamines from (293 to 353) K. J. Chem. Eng. Data 54, 1318–1328 (2009)CrossRefGoogle Scholar
  29. 29.
    Grimsley, G.R., Scholtz, J.M., Pace, C.N.: A summary of the measured pK values of the ionizable groups in folded proteins. Protein Sci. 18, 247–251 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of ChemistryUniversity of GdańskGdańskPoland

Personalised recommendations