Journal of Solution Chemistry

, Volume 46, Issue 7, pp 1475–1489 | Cite as

Highly Efficient Solvent Extraction of Americium and Europium by Using Hydrogen Dicarbollylcobaltate and N,N′-Diethyl-N,N′-bis(4-ethylphenyl)-1,10-phenanthroline-2,9-dicarboxamide

  • Emanuel Makrlík
  • Petr Vaňura
  • Pavel Selucký
  • Vasily Babain
  • Mikhail Alyapyshev
  • Dmitriy Dar’in


Solvent extraction of microamounts of Eu3+ and Am3+ from water into nitrobenzene by means of a mixture of hydrogen dicarbollylcobaltate (H+B) and N,N′-diethyl-N,N′-bis(4-ethylphenyl)-1,10-phenanthroline-2,9-dicarboxamide (L) was studied. The equilibrium data were explained assuming that the species HL+, \( \text{HL}_{\text{2}}^{ + } \), \( \text{ML}_{2}^{3 + } \), and \( \text{ML}_{\text{3}}^{{\text{3} + }} \) (M3+ = Eu3+, Am3+; L = N,N′-diethyl-N,N′-bis(4-ethylphenyl)-1,10-phenanthroline-2,9-dicarboxamide) are extracted into the organic phase. Extraction and stability constants of the cationic complex species in nitrobenzene saturated with water were determined and are discussed. The reached separation factors SFAm/Eu in this two-phase system are in the range of 19–99. From the experimental results it is apparent that this very effective N,N′-diethyl-N,N′-bis(4-ethylphenyl)-1,10-phenanthroline-2,9-dicarboxamide receptor for the Eu3+ and Am3+ cations could be considered as a potential extraction agent for nuclear waste treatment.

Graphical Abstract


Solvent extraction Europium and americium Substituted 1,10-phenanthroline-2,9-dicarboxamide Extraction and stability constants Water–nitrobenzene system 



This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Project No. 42900/1312/3114 entitled “Environmental Aspects of Sustainable Development of Society,” by the Czech Ministry of Education, Youth, and Sports, Project MSMT No. 20/2015, and finally, by the Government of Russian Federation, Grant No. 074-U01.


  1. 1.
    Retegan, T., Berthon, L., Ekberg, C., Fermvik, A., Skarnemark, G., Zorz, N.: Electrospray ionization mass spectrometry investigation of BTBP–lanthanide(III) and actinide(III) complexes. Solvent Extr. Ion Exch. 27, 663–682 (2009)CrossRefGoogle Scholar
  2. 2.
    Fermvik, A., Ekberg, C., Englund, S., Foreman, M.R.S.J., Modolo, G., Retegan, T., Skarnemark, G.: Influence of dose rate on the radiolytic stability of a BTBP solvent for actinide (III)/lanthanide(III) separation. Radiochim. Acta 97, 319–324 (2009)CrossRefGoogle Scholar
  3. 3.
    Magnusson, D., Christiansen, B., Malmbeck, R., Glatz, J.-P.: Investigation of the radiolytic stability of a CyMe4-BTBP based SANEX solvent. Radiochim. Acta 97, 497–502 (2009)Google Scholar
  4. 4.
    Magnusson, D., Christiansen, B., Foreman, M.R.S., Geist, A., Glatz, J.-P., Malmbeck, R., Modolo, G., Serrano-Purroy, D., Sorel, C.: Demonstration of a SANEX process in centrifugal contactors using the CyMe4-BTBP molecule on a genuine fuel solution. Solvent Extr. Ion Exch. 27, 97–106 (2009)CrossRefGoogle Scholar
  5. 5.
    Lewis, F.W., Harwood, L.M., Hudson, M.J., Drew, M.G.B., Desreux, J.F., Vidick, G., Bouslimani, N., Modolo, G., Wilden, A., Sypula, M., Vu, T.-H., Simonin, J.-P.: Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand. J. Am. Chem. Soc. 133, 13093–13102 (2011)CrossRefGoogle Scholar
  6. 6.
    Hudson, M.J., Harwood, L.M., Laventine, D.M., Lewis, F.W.: Use of soft heterocyclic N-donor ligands to separate actinides and lanthanides. Inorg. Chem. 52, 3414–3428 (2013)CrossRefGoogle Scholar
  7. 7.
    Bremer, A., Whittaker, D.M., Sharrad, C.A., Geist, A., Panak, P.J.: Complexation of Cm(III) and Eu(III) with CyMe4-BTPhen and CyMe4-BTBP studied by time resolved laser fluorescence spectroscopy. Dalton Trans. 43, 2684–2694 (2014)CrossRefGoogle Scholar
  8. 8.
    Lewis, F.W., Hudson, M.J., Harwood, L.M.: Development of highly selective ligands for separations of actinides from lanthanides in the nuclear fuel cycle. Synlett 18, 2609–2632 (2011)Google Scholar
  9. 9.
    Panak, P.J., Geist, A.: Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev. 113, 1199–1236 (2013)CrossRefGoogle Scholar
  10. 10.
    Cuillerdier, C., Musikas, C., Hoel, P., Nigond, L., Vitart, X.: Malonamides as new extractants for nuclear waste solutions. Sep. Sci. Technol. 26, 1229–1244 (1991)CrossRefGoogle Scholar
  11. 11.
    Manchanda, V.K., Pathak, P.N.: Amides and diamides as promising extractants in the back end of the nuclear fuel cycle: an overview. Sep. Pur. Technol. 35, 85–103 (2004)CrossRefGoogle Scholar
  12. 12.
    Sasaki, Y., Choppin, G.R.: Solvent extraction of Eu, Th, U, Np and Am with N,N′-dimethyl-N,N′-dihexyl-3-oxapentanediamide and its analogous compounds. Anal. Sci. 12, 225–230 (1996)CrossRefGoogle Scholar
  13. 13.
    Sasaki, Y., Sugo, Y., Suzuki, S., Tachimori, S.: The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3n-dodecane system. Solvent Extr. Ion Exch. 19, 91–103 (2001)CrossRefGoogle Scholar
  14. 14.
    Sasaki, Y., Tachimori, S.: Extraction of actinides(III), (IV), (V), (VI), and lanthanides(III) by structurally tailored diamides. Solvent Extr. Ion Exch. 20, 21–34 (2002)CrossRefGoogle Scholar
  15. 15.
    Sasaki, Y., Sugo, Y., Suzuki, S., Kimura, T.: A method for the determination of extraction capacity and its application to N,N,N′,N′-tetraalkylderivatives of diglycolamide–monoamide/n-dodecane-media. Anal. Chim. Acta 543, 31–37 (2005)CrossRefGoogle Scholar
  16. 16.
    Ansari, S.A., Pathak, P.N., Manchanda, V.K., Husain, M., Prasad, A.K., Parmar, V.S.: N, N, N′, N′-tetraoctyl diglycolamide (TODGA): a promising extractant for actinide partitioning from high level waste (HLW). Solvent Extr. Ion Exch. 23, 463–479 (2005)CrossRefGoogle Scholar
  17. 17.
    Horwitz, E.P., McAlister, D.R., Bond, A.H., Barrans Jr., R.E.: Novel extraction of chromatographic resins based on tetraalkyl diglycolamides: characterization and potential applications. Solvent Extr. Ion Exch. 23, 319–344 (2005)CrossRefGoogle Scholar
  18. 18.
    Iqbal, M., Mohapatra, P.K., Ansari, S.A., Huskens, J., Verboom, W.: Preorganization of diglycolamides on the calix[4]arene platform and its effect on the extraction of Am(III)/Eu(III). Tetrahedron 68, 7840–7847 (2012)CrossRefGoogle Scholar
  19. 19.
    Mohapatra, P.K., Iqbal, M., Raut, D.R., Verboom, W., Huskens, J., Godbole, S.V.: Complexation of novel diglycolamide functionalized calix[4]arenes: unusual extraction behaviour, transport, and fluorescence studies. Dalton Trans. 41, 360–363 (2012)CrossRefGoogle Scholar
  20. 20.
    Raut, D.R., Mohapatra, P.K., Ansari, S.A., Godbole, S.V., Iqbal, M., Manna, D., Ghanty, T.K., Huskens, J., Verboom, W.: Complexation of trivalent lanthanides and actinides with several novel diglycolamide functionalized calix[4]arenes: solvent extraction, luminescence and theoretical studies. RSC Advances 3, 9296–9303 (2013)CrossRefGoogle Scholar
  21. 21.
    Mohapatra, P.K., Raut, D.R., Iqbal, M., Huskens, J., Verboom, W.: Evaluation of several multiple diglycolamide functionalized calix[4]arene ligands for the isolation of carrier free 90Y from 90Sr. Appl. Radiat. Isot. 85, 133–138 (2014)CrossRefGoogle Scholar
  22. 22.
    Makrlík, E., Vaňura, P.: Applications of the dicarbollylcobaltate(III) anion in the water/nitrobenzene extraction system. Talanta 32, 423–429 (1985)CrossRefGoogle Scholar
  23. 23.
    Makrlík, E., Vaňura, P., Selucký, P.: Stability constants of some univalent cation complexes of 2,3-naphtho-15-crown-5 in nitrobenzene saturated with water. J. Solution Chem. 38, 1129–1138 (2009)CrossRefGoogle Scholar
  24. 24.
    Makrlík, E., Vaňura, P., Selucký, P.: Solvent extraction of calcium and strontium into nitrobenzene by using hydrogen dicarbollylcobaltate in the presence of dibutyl diethylcarbamoylmethylene phosphonate. J. Solution Chem. 39, 692–700 (2010)CrossRefGoogle Scholar
  25. 25.
    Makrlík, E., Vaňura, P., Selucký, P., Babain, V.A., Smirnov, I.V.: Extractive properties of synergistic mixture of hydrogen dicarbollylcobaltate and N, N, N′, N′-tetraisobutyl-2,6-dipicolinamide in the water–nitrobenzene system with regard to Eu3+ and Am3+. Acta Chim. Slov. 56, 718–722 (2009)Google Scholar
  26. 26.
    Makrlík, E., Vaňura, P., Sedláková, Z.: Extraction of europium and cerium into nitrobenzene using synergistic mixture of hydrogen dicarbollylcobaltate and polyethylene glycol PEG 600. J. Radioanal. Nucl. Chem. 283, 157–161 (2010)CrossRefGoogle Scholar
  27. 27.
    Makrlík, E., Spíchal, Z., Vaňura, P., Selucký, P.: Synergistic extraction of europium and americium into nitrobenzene by using hydrogen dicarbollylcobaltate and bis(diphenylphosphino)methane dioxide. J. Radioanal. Nucl. Chem. 295, 2135–2140 (2013)CrossRefGoogle Scholar
  28. 28.
    Romanovskiy, V.N., Smirnov, I.V., Babain, V.A., Todd, T.A., Herbst, R.S., Law, J.D., Brewer, K.N.: The universal solvent extraction (UNEX) process. I. Development of the UNEX process solvent for the separation of cesium, strontium and the actinides from acidic radioactive waste. Solvent Extr. Ion Exch. 19, 1–21 (2001)CrossRefGoogle Scholar
  29. 29.
    Law, J.D., Herbst, R.S., Todd, T.A., Romanovskiy, V.N., Babain, V.A., Esimantovskiy, V.M., Smirnov, I.V., Zaitsev, B.N.: The universal solvent extraction (UNEX) process. II. Flowsheet development and demonstration of the UNEX process for the separation of cesium, strontium and actinides from actual acidic radioactive waste. Solvent Extr. Ion Exch. 19, 23–36 (2001)CrossRefGoogle Scholar
  30. 30.
    Wu, L., Fang, Y., Jia, Y., Yang, Y., Liao, J., Liu, N., Yang, X., Feng, W., Ming, J., Yuan, L.: Pillar[5]arene-based diglycolamides for highly efficient separation of americium(III) and europium(III). Dalton Trans. 43, 3835–3838 (2014)CrossRefGoogle Scholar
  31. 31.
    Li, C., Wu, L., Chen, L., Yuan, X., Cai, Y., Feng, W., Liu, N., Ren, Y., Sengupta, A., Murali, M.S., Mohapatra, P.K., Tao, G., Zeng, H., Ding, S., Yuan, L.: Highly efficient extraction of actinides with pillar[5]arene-derived diglycolamides in ionic liquids via a unique mechanism involving competitive host-guest interactions. Dalton Trans. 45, 19299–19310 (2016)CrossRefGoogle Scholar
  32. 32.
    Galletta, M., Scaravaggi, S., Macerata, E., Famulari, A., Mele, A., Panzeri, W., Sansone, F., Casnati, A., Mariani, M.: 2,9-Dicarbonyl-1,10-phenanthroline derivatives with an unprecedented Am(III)/Eu(III) selectivity under highly acidic conditions. Dalton Trans. 42, 16930–16938 (2013)CrossRefGoogle Scholar
  33. 33.
    Manna, D., Mula, S., Bhattacharyya, A., Chattopadhyay, S., Ghanty, T.K.: Actinide selectivity of 1,10-phenanthroline-2,9-dicarboxamide and its derivatives: a theoretical prediction followed by experimental validation. Dalton Trans. 44, 1332–1340 (2015)CrossRefGoogle Scholar
  34. 34.
    Hawthorne, M.F., Young, D.C., Andrews, T.D., Howe, D.V., Pilling, R.L., Pitts, A.D., Reintjes, M., Warren, L.F., Wegner, P.A.: π-Dicarbollyl derivatives of the transition metals: metallocene analogs. J. Am. Chem. Soc. 90, 879–896 (1968)CrossRefGoogle Scholar
  35. 35.
    Makrlík, E.: Hydration of complexes of some univalent cations with polyethylene glycol ligands in nitrobenzene saturated with water. Collect. Czech. Chem. Commun. 57, 289–295 (1992)CrossRefGoogle Scholar
  36. 36.
    Vaňura, P., Rais, J., Selucký, P., Kyrš, M.: Extraction of strontium with dicarbolide in the presence of polyethylene glycol. Collect. Czech. Chem. Commun. 44, 157–166 (1979)CrossRefGoogle Scholar
  37. 37.
    Makrlík, E., Vaňura, P., Spíchal, Z., Selucký, P.: Synergistic extraction of europium and americium into nitrobenzene by using hydrogen dicarbollylcobaltate and 1,3-bis(diphenylphosphino)propane dioxide. J. Radioanal. Nucl. Chem. 298, 243–248 (2013)CrossRefGoogle Scholar
  38. 38.
    Vaňura, P., Makrlík, E., Rais, J., Kyrš, M.: Extraction of strontium and barium by nitrobenzene solution of dicarbolide in the presence of polyethylene glycols. Collect. Czech. Chem. Commun. 47, 1444–1464 (1982)CrossRefGoogle Scholar
  39. 39.
    Vaňura, P., Makrlík, E.: The extraction of strontium and barium with a solution of bis-1,2-dicarbollylcobaltate in nitrobenzene in the presence of 18-crown-6. Collect. Czech. Chem. Commun. 58, 1324–1336 (1993)CrossRefGoogle Scholar
  40. 40.
    Sillén, L.G., Warnqvist, B.: High-speed computers as a supplement to graphical methods. VI. A strategy for two-level LETAGROP adjustment of common and “group” parameters. Features that avoid divergence. Arkiv Kemi 31, 315–339 (1969)Google Scholar
  41. 41.
    Rais, J., Šebestová, E., Selucký, P., Kyrš, M.: Synergistic effect of polyethylenglycols in extraction of alkaline earth cations by nitrobenzene. J. Inorg. Nucl. Chem. 38, 1742–1744 (1976)CrossRefGoogle Scholar
  42. 42.
    Rais, J., Tachimori, S.: Extraction separation of tervalent americium and lanthanides in the presence of some soft and hard donors and dicarbollide. Sep. Sci. Technol. 29, 1347–1365 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Emanuel Makrlík
    • 1
  • Petr Vaňura
    • 2
  • Pavel Selucký
    • 3
  • Vasily Babain
    • 4
    • 5
  • Mikhail Alyapyshev
    • 5
    • 6
  • Dmitriy Dar’in
    • 7
  1. 1.Faculty of Environmental SciencesCzech University of Life Sciences, PraguePrague 6 – SuchdolCzech Republic
  2. 2.Department of Analytical ChemistryUniversity of Chemistry and Technology, PraguePrague 6Czech Republic
  3. 3.Nuclear Research InstituteŘežCzech Republic
  4. 4.ThreeArc Mining Ltd5, Stary Tolmachevskiy pr.MoscowRussia
  5. 5.ITMO UniversitySt. PetersburgRussia
  6. 6.Polymetal InternationalSt. PetersburgRussia
  7. 7.Institute of ChemistrySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations