Journal of Solution Chemistry

, Volume 46, Issue 6, pp 1272–1283 | Cite as

Stability Constants and Spectroscopic Properties of Thorium(IV)–Arsenazo III Complexes in Aqueous Hydrochloric Medium

  • Seonggyu Choi
  • Jun-Yeop Lee
  • Jong-Il YunEmail author


The complexation characteristics of thorium–arsenazo III in the range of 1–6 mol·L−1 hydrochloric acid media were investigated by UV–Vis absorption spectroscopy and computational analysis. The chemical equilibrium model of thorium–arsenazo III complexation was established including the species distribution of arsenazo III, the formation of thorium chloride species, and the release of protons from thorium–arsenazo III complexes. In the spectra of thorium–arsenazo III complexes, two characteristic absorption peaks were observed at 610 and 660 nm, and the latter peak showed a tendency to shift about 4 nm to higher wavelength as the acidity of the hydrochloric acid media increased from 1 to 6 mol·L−1. Analysis of the experimental data indicates that the molar absorptivities of both 1:1 and 1:2 complexes (thorium to arsenazo III) steadily increase as the acidity of medium increases. The determined stability constants of 1:1 and 1:2 complexes at various concentrations of hydrochloric acid were extrapolated to zero ionic strength, based on the specific ion interaction theory (SIT) approach. The limiting stability constants were determined to be \( { \log }_{10} \beta_{11}^{\text{o}} \) = 8.56 ± 0.13 and \( {\log}_{10} \beta_{12}^{\text{o}} \) = 15.17 ± 0.18 with ion interaction coefficients of Δε 11 = –0.57 ± 0.02 kg·mol−1 and Δε 12 = –0.60 ± 0.04 kg·mol−1, respectively.


Thorium Arsenazo III Stability constant Ion interaction coefficient Spectrophotometry Computational analysis 



This work was supported by the BK21 PLUS program, Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1A5A1013919), and the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KOFONS), and granted financial resource from the Nuclear Safety and Security Commission (NSSC), Republic of Korea (No. 1305032).


  1. 1.
    Runde, W.: The chemical interactions of actinides in the environment. Los Alamos Sci. 26, 392–411 (2000)Google Scholar
  2. 2.
    Kim, J.I.: Significance of actinide chemistry for the long-term safety of waste disposal. Nucl. Eng. Technol. 38, 459–482 (2006)Google Scholar
  3. 3.
    Altmaier, M., Gaona, X., Fanghänel, T.: Recent advances in aqueous actinide chemistry and thermodynamics. Chem. Rev. 113, 901–943 (2013)CrossRefGoogle Scholar
  4. 4.
    Holm, T.R., George, G.K., Barcelona, M. J.: Dissolved oxygen and oxidation-reduction potentials in ground water. EPA/600/2-86/042, U.S. Environmental Protection Agency, Washington, D.C. (1986)Google Scholar
  5. 5.
    Grenthe, I., Stumm, W., Laaksuharju, M., Nilsson, A.-C., Wikberg, P.: Redox potentials and redox reactions in deep groundwater systems. Chem. Geol. 98, 131–150 (1992)CrossRefGoogle Scholar
  6. 6.
    Ryu, J.-H., Kwon, J.-S., Kim, G.-Y., Koh, Y.-K.: Geochemical characterization of rock–water interaction in groundwater at the KURT site. J. Nucl. Fuel Cycle Waste Technol. 10(3), 189–197 (2012)CrossRefGoogle Scholar
  7. 7.
    Savvin, S.B.: Photometric determination of thorium and uranium with reagent arsenazo III. Dokl. Akad. Nauk SSSR 127, 1231–1234 (1959)Google Scholar
  8. 8.
    Savvin, S.B.: Analytical use of arsenazo III. Talanta 8, 673–685 (1961)CrossRefGoogle Scholar
  9. 9.
    Savvin, S.B.: Analytical applications of arsenazo III–II. Talanta 11, 1–6 (1964)CrossRefGoogle Scholar
  10. 10.
    Petrow, H.G., Strehlow, C.D.: Spectrophotometric determination of thorium in bone ash using arsenazo III. Anal. Chem. 39, 265–267 (1967)CrossRefGoogle Scholar
  11. 11.
    Kiriyama, T., Kuroda, R.: Ion-exchange separation and spectrophotometric determination of zirconium, thorium and uranium in silicate rocks with arsenazo III. Anal. Chim. Acta 71, 375–381 (1974)CrossRefGoogle Scholar
  12. 12.
    Baylor, S.M., Chandler, W.K., Marshall, M.W.: Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from arsenazo III calcium transients. J. Physiol. 344, 625–666 (1983)CrossRefGoogle Scholar
  13. 13.
    Rowatt, E., Williams, R.J.P.: The interaction of cations with the dye arsenazo III. Biochem. J. 259, 295–298 (1989)CrossRefGoogle Scholar
  14. 14.
    Khalili, F.I., Salameh, N.H., Shaybe, M.M.: Sorption of uranium(VI) and thorium(IV) by Jordanian bentonite. J. Chem. 2013, 1–13 (2013)CrossRefGoogle Scholar
  15. 15.
    Liang, Y., He, Y.: Arsenazo III functionalized gold nanoparticles for photometric determination of uranyl ion. Microchim. Acta 183, 407–413 (2016)CrossRefGoogle Scholar
  16. 16.
    Savvin, S.B.: Analytical applications of arsenazo III–III. Talanta 11, 7–19 (1964)CrossRefGoogle Scholar
  17. 17.
    Rohwer, H., Rheeder, N., Hosten, E.: Interactions of uranium and thorium with arsenazo III in an aqueous medium. Anal. Chim. Acta 341, 263–268 (1997)CrossRefGoogle Scholar
  18. 18.
    Leggett, D.J.: Computational Methods for the Determination of Formation Constants. Plenum Press, New York (1985)CrossRefGoogle Scholar
  19. 19.
    Hosten, E., Rohwer, H.: Complexation reactions of uranyl with arsenazo III. Anal. Chim. Acta 355, 95–100 (1997)CrossRefGoogle Scholar
  20. 20.
    Rohwer, H., Hosten, E.: pH dependence of the reactions of arsenazo III with the lanthanides. Anal. Chim. Acta 339, 271–277 (1997)CrossRefGoogle Scholar
  21. 21.
    Wanner, H., Östhols, E.: Guidelines for the Assignment of Uncertainties. OECD Nuclear Energy Agency, Issy-les-Moulineaux (1999)Google Scholar
  22. 22.
    Grenthe, I., Mompean, F., Spahiu, K., Wanner, H.: Guidelines for the Extrapolation to Zero Ionic Strength. OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux (2013)Google Scholar
  23. 23.
    Guillaumont, R., Fanghänel, T., Neck, V., Fuger, J., Palmer, D.A., Grenthe, I., Rand, M.H.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium. Americium and Technetium. OECD Nuclear Energy Agency Data Bank, Elsevier, Amsterdam (2003)Google Scholar
  24. 24.
    Rand, M., Fuger, J., Grenthe, I., Neck, V., Rai, D.: Chemical Thermodynamics of Thorium. OECD Nuclear Energy Agency Data Bank, OECD Publications, Paris (2008)Google Scholar
  25. 25.
    Soleimani, F., Karimi, R., Gharib, F.: Thermodynamic studies on protonation constant of acyclovir at different ionic strengths. J. Solution Chem. 45, 920–931 (2016)CrossRefGoogle Scholar
  26. 26.
    Bretti, C., De Stefano, C., Millero, F.J., Sammartano, S.: Modeling of protonation constants of linear aliphatic dicarboxylates containing –S-groups in aqueous chloride salt solutions, at different ionic strengths, using SIT and Pitzer equations and empirical relationships. J. Solution Chem. 37, 763–784 (2008)CrossRefGoogle Scholar
  27. 27.
    Wanner, H., Östhols, E.: Standards and Conventions for TDB Publications. OECD Nuclear Energy Agency, Issy-les-Moulineaux (2000)Google Scholar
  28. 28.
    Schulman, S.G., Liedke, P.: Valence-shell expansion of phosphorus and arsenic in the ground and lowest electronically excited singlet states of phenylphosphonic and phenylarsonic acids. Anal. Chim. Acta 63, 197–200 (1973)CrossRefGoogle Scholar
  29. 29.
    Dixon, W.T., Murphy, D.: Determination of the acidity constants of some phenol radical cations by means of electron spin resonance. J. Chem. Soc. Faraday Trans. 2(72), 1221–1230 (1976)CrossRefGoogle Scholar
  30. 30.
    Jackson, G.E., Seymour, L.F.: Formation constants at high ionic strength–II. Talanta 42, 9–16 (1995)CrossRefGoogle Scholar
  31. 31.
    Buděšínský, B.: Acidity of several chromotropic acid azo derivatives. Talanta 16, 1277–1288 (1969)CrossRefGoogle Scholar
  32. 32.
    Kim, H.-T., Frederick, W.J.: Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 °C. 1. Single salt parameters. J. Chem. Eng. Data 33, 177–184 (1988)CrossRefGoogle Scholar
  33. 33.
    Das, B.: Pitzer ion interaction parameters of single aqueous electrolytes at 25 °C. J. Solution Chem. 33, 33–45 (2004)CrossRefGoogle Scholar
  34. 34.
    Rohwer, H., Collier, N., Hosten, E.: Spectrophotometric study of arsenazo III and its interactions with lanthanides. Anal. Chim. Acta 314, 219–223 (1995)CrossRefGoogle Scholar
  35. 35.
    Palei, P.N., Udaltsova, N.I., Nemodruk, A.A.: Acid dissociation constants of arsenazo III (in Russian). Zh. Analit. Khim. 22, 1797–1804 (1967)Google Scholar
  36. 36.
    Němcová, I., Metal, B.: Dissociation constants of arsenazo III. Talanta 33, 841–842 (1986)CrossRefGoogle Scholar
  37. 37.
    Mogi, H., Odashima, T., Ishii, H.: A kinetic study of the complexation reaction of scandium(III) with arsenazo III. Nippon Kagaku Kaishi 1983, 1437–1441 (1983)CrossRefGoogle Scholar
  38. 38.
    Kufelnicki, A., Lis, S., Meinrath, G.: Application of cause-and-effect analysis to potentiometric titration. Anal. Bioanal. Chem. 382, 1652–1661 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Nuclear and Quantum EngineeringKAISTDaejeonRepublic of Korea
  2. 2.Institute for Nuclear Waste Disposal, Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations