Advertisement

Journal of Solution Chemistry

, Volume 45, Issue 5, pp 712–731 | Cite as

Potentiometric, Thermodynamics and Coordination Properties for Binary and Mixed Ligand Complexes of Copper(II) with Imidazole-4-acetic Acid and Tryptophan or Phenylalanine Aromatic Amino Acids

  • Abeer T. AbdelkarimEmail author
  • Ahmed A. El-Sherif
Article

Abstract

Binary and ternary complex formation equilibria of copper(II) with imidazole-4-acetic acid (IMA) and some aromatic amino acids such as tryptophan and phenylalanine have been studied from 15 to 45 °C by potentiometric titration. The pH-titrations of the reaction mixtures have shown 1:1:1 (Cu:IMA:amino acid) ternary complex formation. The stability of mixed-ligand complexes was quantitatively compared with the stability of the binary complexes as Δlog10 K, Δlog10 β and log10 X parameters. The speciation of different species in solution has been evaluated as a function of pH. The effect of temperature on protonation of the ligands and formation of mixed ligand complexes was investigated. Thermodynamic parameters were calculated and are discussed. The effect of solvent of the protonation of IMA and Cu–IMA complex formation was also investigated and discussed. Additionally, the stoichiometric protonation constants (log10 β) of imidazole-4-acetic acid and its binary Cu(II)–IMA complexes were determined potentiometrically over a wide range of solvent composition.

Keywords

Potentiometry Copper(II) Imidazole-4-acetic acid Tryptophan Thermodynamics Species 

Abbreviations

IMA

Imidazole-4-acetic acid

Phe

Phenylalanine amino acid

Trp

Tryptophan amino acid

References

  1. 1.
    Sigel, A., Sigel, H., Sigel, R.K.O. (eds.): Metal Ions in Life Sciences, vol. 1. Wiley, Chichester (2006)Google Scholar
  2. 2.
    May, P.M., Williams, D.R.: In: Sigel, H. (ed.) Metal Ions in Biological Systems Properties of Copper, vol. 12. Marcel Dekker, New York (1981)Google Scholar
  3. 3.
    Sigel, H. (ed.): Metal Ions in Biological Systems, vol. 13. Marcel Dekker, New York (1981)Google Scholar
  4. 4.
    Miura, T., Hori-J, A., Mototani, H., Takeuchi, H.: Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence. Biochemistry 38, 11560–11569 (1999)CrossRefGoogle Scholar
  5. 5.
    Solomon, E.I., Szilagyi, R.K., George, S.D., Basumallick, L.: Electronic structures of metal sites in proteins and models: Contributions to function in blue copper proteins. Chem. Rev. 104, 419–458 (2009)CrossRefGoogle Scholar
  6. 6.
    Solomon, E.I., Sundaram, U.M., Machonkin, T.E.: Multicopper oxidases and oxygenases. Chem. Rev. 96, 2563–2606 (1996)CrossRefGoogle Scholar
  7. 7.
    Fujimori, T., Yamada, S., Yasui, H., Sakurai, H., In, Y., Ishida, T.: Orally active antioxidative copper(II) aspirinate: synthesis, structure characterization, superoxide scavenging activity, and in vitro and in vivo antioxidative evaluations. J. Biol. Inorg. Chem. 10, 831–841 (2005)CrossRefGoogle Scholar
  8. 8.
    Lobana, T.S., Rekha, R., Butcher, R.J., Castineiras, A., Bermejo, E., Bharatam, P.V.: Novel oxygen chirality induced by asymmetric coordination of an ether oxygen atom to a metal center in a series of sugar-pendant dipicolylamine copper(II) complexes. Inorg. Chem. 45, 1535–1551 (2006)CrossRefGoogle Scholar
  9. 9.
    Belicchi-Ferrari, M., Bisceglie, F., Pelosi, G., Sassi, M., Tarasconi, P., Dornia, M., Capacchi, S., Albertini, R., Pinelli, S.: Synthesis, characterization and X-ray structures of new antiproliferative and proapoptotic natural aldehyde thiosemicarbazones and their nickel(II) and copper(II) complexes. J. Inorg. Biochem. 90, 113–126 (2002)CrossRefGoogle Scholar
  10. 10.
    Remko, M., Fitz, D., Broer, R., Rode, B.M.: Effect of metal ions (Ni2+, Cu2+ and Zn2+) and water coordination on the structure of l-phenylalanine, l-tyrosine, l-tryptophan and their zwitter ionic forms. J. Mol. Model. 17, 3117–3128 (2011)CrossRefGoogle Scholar
  11. 11.
    Bell, C., Abrams, J., Nutt, D.: Tryptophan depletion and its implications for psychiatry. Br. J. Psychiatry 178, 399–405 (2001)CrossRefGoogle Scholar
  12. 12.
    Markus, C.R., Olivier, B., De Haan, E.H.F.: Whey protein rich in α-lactalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects. Am. J. Clin. Nutr. 75, 1051–1056 (2002)Google Scholar
  13. 13.
    Frausto da Silva, J.J.R., Williams, R.J.P.: The Biological Chemistry of the Elements; The Inorganic Chemistry of the Life. Clarendon Press, Oxford (1991)Google Scholar
  14. 14.
    Bertini, I., Gray, H.B., Lippard, S.J., Valentine, J.S.: Bioinorganic Chemistry. University Science Books, Mill Valley (1994)Google Scholar
  15. 15.
    Gilman, A.G., Goodman, L.S.: Goodman and Gilman’s the Pharmacological Basis of Therapeutics, 10th edn. Mc-Graw Hill, New Jersey (2002)Google Scholar
  16. 16.
    Kimura, E., Kurogi, Y., Shionoya, M., Shira, M.: Synthesis, properties, and complexation of a new imidazole-pendant macrocyclic 12-membered triamine ligand. Inorg. Chem. 30, 4524–4529 (1991)CrossRefGoogle Scholar
  17. 17.
    Schayer, R.W.: The metabolism of ring labeled histamine. J. Biol. Chem. 196, 469–475 (1952)Google Scholar
  18. 18.
    Baldridge, R.C., Tourtellotte, C.D.: The metabolism of histidine. III. Urinary metabolites. J. Biol. Chem. 233, 125–127 (1958)Google Scholar
  19. 19.
    Khandelwal, J.K., Prell, G.D., Morrishow, A.M., Green, J.P.: Presence and measurement of imidazoleacetic acid, a γ-aminobutyric acid agonist, in rat brain and human cerebrospinal fluid. J. Neurochem. 52, 1107–1113 (1989)CrossRefGoogle Scholar
  20. 20.
    García-Raso, A., Fiol, J.J., Adrover, B., Tauler, P., Pons, A., Mata, I., Espinosa, E., Molins, E.: Reactivity of copper(II) peptide complexes with bioligands (benzimidazole and creatinine). Polyhedron 22, 3255–3264 (2003)CrossRefGoogle Scholar
  21. 21.
    El-Sherif, A.A.: Shoukry: M.M.: Copper(II) complexes of imino-bis(methyl phosphonic acid) with some bio-revelant ligands. Equilibrium studies and hydrolysis of glycine methyl ester through complex formation. J. Coord. Chem. 58, 1401–1415 (2005)CrossRefGoogle Scholar
  22. 22.
    El-Sherif, A.A.: Coordination chemistry of palladium(II) ternary complexes with relevant biomolecules. In: Stoichiometry and Research (ed.) The Importance of Quantity in Biomedicine, pp. 79–120. In-Tech Publisher, Rijeka (2012)Google Scholar
  23. 23.
    El-Sherif, A.A.: Mixed ligand complex formation reactions and equilibrium studies of Cu(II) with bidentate heterocyclic alcohol (N, O) and some bio-relevant ligands. J. Solution Chem. 41, 813–824 (2010)CrossRefGoogle Scholar
  24. 24.
    El-Sherif, A.A.: Coordination properties of bidentate (N, O) and tridentate (N, O, O) heterocyclic alcohols with dimethyltin(IV) ion. J. Coord. Chem. 64, 1240–1253 (2011)CrossRefGoogle Scholar
  25. 25.
    El-Sherif, A.A., Shoukry, M.M., Hosny, W.M., Abd Al-Moghny, M.G.: Complex formation equilibria of unusual seven-coordinate Fe(EDTA) complexes with DNA constituents and related bio-relevant ligands. J. Solution Chem. 41, 813–827 (2012)CrossRefGoogle Scholar
  26. 26.
    El-Sherif, A.A.: Mixed-ligand complexes of 2-(aminomethyl)benzimidazole palladium(II) with various biologically relevant ligands. J. Solution Chem. 35, 1287–1301 (2006)CrossRefGoogle Scholar
  27. 27.
    Jeffery, G.H., Bassett, J., Mendham, J., Deney, R.C.: Vogel’s Textbook of Quantitative Chemical Analysis, 5th edn. Longman, London (1989)Google Scholar
  28. 28.
    Schwarzenbach, G., Flaschka, H.A.: Complexometric Titrations. Barnes and Noble-Methuen, New York (1957)Google Scholar
  29. 29.
    Gran, G.: Determination of the equivalence point in potentiometric titration. Part II. Analyst 77, 661–671 (1952)CrossRefGoogle Scholar
  30. 30.
    Aljahdali, M.S., El-Sherif, A.A., Hilal, R.H., Abdelkarim, A.T.: Mixed bivalent transition metal complexes of 1,10-phenanthroline and 2-aminomethylthiophenyl-4-bromosalicylaldehyde Schiff base: Spectroscopic, molecular modeling and biological activities. Eur. J. Chem. 4, 370–378 (2013)CrossRefGoogle Scholar
  31. 31.
    Buck, R.P., Rondinini, S., Covington, A.K., Baucke, F.G.K., Brett, C.M.A., Camoes, M.F., Milton, M.J.T., Mussini, T., Naumann, R., Pratt, K.W., Spitzer, P., Wilson, G.S.: Measurement of pH. Definition, standards, and procedures. Pure Appl. Chem. 74, 2169–2200 (2002)CrossRefGoogle Scholar
  32. 32.
    Gündüz, T., Kılıç, E., Köpseoğlu, F., Canel, E.: Protonation constants of some substituted salicylideneanilines in dioxan–water mixtures. Anal. Chim. Acta 282, 489–495 (1993)CrossRefGoogle Scholar
  33. 33.
    Van Uitert, G.L., Hass, C.G.: Studies on the coordination compounds. A method for determining thermodynamic equilibrium constants in mixed solvents. J. Am. Chem. Soc. 75, 451–455 (1971)CrossRefGoogle Scholar
  34. 34.
    Aljahdali, M., Foti, C., El-Sherif, A.A., Mohamed, M.M.A., Soliman, A.A.: Al Ruqi, O.S.: Potentiometric determination of stability constants and thermodynamic data for dimethyltin(IV) dichloride complexes with iminobis(methylphosphonic acid) in water and dioxane–water mixtures. Monatsh. Chem. 144, 1467–1480 (2013)CrossRefGoogle Scholar
  35. 35.
    Kılıç, E., Aslan, N.: Determination of autoprotolysis constants of water–organic solvent mixtures by potentiometry. Microchim. Acta 151, 89–92 (2005)CrossRefGoogle Scholar
  36. 36.
    Woolley, E.M., Hurkot, D.G., Hepler, L.G.: Ionization constants for water in aqueous organic mixtures. J. Phys. Chem. 74, 3908–3913 (1970)CrossRefGoogle Scholar
  37. 37.
    Gans, P., Sabatini, A., Vacca, A.: An improved computer program for the computation of formation constants from potentiometric data. Inorg. Chim. Acta 18, 237–239 (1976)CrossRefGoogle Scholar
  38. 38.
    Pettit, L.: University of Leeds, Personal CommunicationGoogle Scholar
  39. 39.
    HyperChem version 7.5 Hypercube, Inc. (2003)Google Scholar
  40. 40.
    Soliman, A.A., El-Sherif, A.A., Amin, M.A.: Thermodynamics, chemical speciation and complex formation equilibria studies of binary and mixed ligand complexes of Cu(II) with 2,2’-bipyridyl and some aromatic diamines. J. Solution Chem. 44, 77–99 (2015)CrossRefGoogle Scholar
  41. 41.
    Rayan, A.M., Ahmed, M.M., Barakat, M.H., Abdelkarimd, A.T., El-Sherif, A.A.: Complex formation of cetirizine drug with bivalent transition metal(II) ions in the presence of alanine: synthesis, characterization, equilibrium studies, and biological activity studies. J. Coord. Chem. 68, 678–703 (2015)CrossRefGoogle Scholar
  42. 42.
    Smith, R.M., Martell, A.E.: NIST Standard Reference Database. NIST Critically Selected Stability Constants of Metal Complexes Database. Version 3.0. Data collected and selected by U.S. Department of Commerce, National Institute of Standards and Technology (1997)Google Scholar
  43. 43.
    Tȍrȍk, I., Surdy, P., Rockenbauer, A., Korecz Jr, L., Anthony, G., Koolhaas, A., Gajda, T.: Nickel(II)-, copper(II)- and zinc(II)-complexes of some substituted imidazole ligands. J. Inorg. Biochem. 71, 7–14 (1998)CrossRefGoogle Scholar
  44. 44.
    Aljahdali, M., El-Sherif, A.A., Shoukry, M.M., Mohamed, S.E.: Potentiometric and thermodynamic studies of binary and ternary transition metal(II) complexes of imidazole-4-acetic acid and some bio-relevant ligands. J. Solution Chem. 42, 1028–1050 (2013)CrossRefGoogle Scholar
  45. 45.
    El-Sherif, A.A.: Potentiometric determination of the stability constants of trimethyltin(iv) chloride complexes with imino-bis(methylphosphonic acid) in water and dioxane–water mixtures. J. Solution Chem. 41, 392–409 (2012)CrossRefGoogle Scholar
  46. 46.
    Mahrouka, M.M., Abdelkarim, A.T., El-Sherif, A.A., Shoukry, M.M.: Potentiometric and thermodynamic studies for binary and mixed ligand complexes of some transition metal ions with hydrazone and phenylalanine. Int. J. Electrochem. Sci. 10, 456–471 (2015)Google Scholar
  47. 47.
    Phillips, C.S.G., Williams, R.J.P.: Inorganic Chemistry, vol. 2, p. 268. Oxford (1966)Google Scholar
  48. 48.
    Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry. Wiley, London (1962)Google Scholar
  49. 49.
    Sigel, H.: Coordination Chemistry, vol. 20. Pergamon Press, Oxford (1980)Google Scholar
  50. 50.
    Walker, F.A., Sigel, H., McCormick, D.B.: Spectral properties of mixed-ligand copper(II) complexes and their corresponding binary parent complexes. Inorg. Chem. 11, 2756–2763 (1972)CrossRefGoogle Scholar
  51. 51.
    Aljahdali, M.S., El-Sherif, A.A.: Equilibrium studies of binary and mixed-ligand complexes of zinc(II) involving 2-(aminomethyl)-benzimidazole and some bio-relevant ligands. J. Solution Chem. 41, 1759–1776 (2012)CrossRefGoogle Scholar
  52. 52.
    Maggiore, R., Musumeci, S., Rizzarelli, E., Sammartano, S.: Complexes of Cu2+ with 2,2-dipyridyl and cyclohexane-1,1-dicarboxylic acid. Inorg. Chim. Acta 18, 155–158 (1976)CrossRefGoogle Scholar
  53. 53.
    Mahmoud, M.M.A., El-Sherif, A.A.: Complex formation equilibria between zinc(II), nitrilo-tris(methylphosphonic aid) and some bio-relevant ligands. The kinetics and mechanism for zinc(ii) ion promoted hydrolysis of glycine methyl ester. J. Solution Chem. 39, 639–653 (2010)CrossRefGoogle Scholar
  54. 54.
    Kramer-Schnabel, U., Linder, P.W.: Substituent effects in the protonation and complexation with copper(II) ions of organic monophosphate esters. A potentiometric and calorimetric study. Inorg. Chem. 30, 1248–1254 (1991)CrossRefGoogle Scholar
  55. 55.
    Rees, D.C.: Experimental evaluation of the effective dielectric constant of proteins. J. Mol. Biol. 141, 323–326 (1980)CrossRefGoogle Scholar
  56. 56.
    Rogersa, N.K., Mooreb, G.R., Sternberga, M.J.E.: Electrostatic interactions in globular proteins: calculation of the pH dependence of the redox potential of cytochrome C551. J. Mol. Biol. 182, 613–616 (1985)CrossRefGoogle Scholar
  57. 57.
    Åkerlöf, G., Short, O.A.: The dielectric constant of dioxane–water mixtures between 0° and 80°–correction. J. Am. Chem. Soc. 75, 6357–6362 (1953)CrossRefGoogle Scholar
  58. 58.
    Jameson, R.F., Wilson, M.F.: Thermodynamics of the interactions of catechol with transition metals. Part I. Free energy, enthalpy, and entropy changes for the ionisation of catechol at 25°C. Comparison of the temperature-coefficient method with direct calorimetry. J. Chem. Soc., Dalton Trans. 23, 2507–2610 (1972)Google Scholar
  59. 59.
    Mohamed, M.M.A., Shehata, M.R., Shoukry, M.M.: Trimethyltin(IV) complexes with some selected DNA constituents. J. Coord. Chem. 53, 125–142 (2001)CrossRefGoogle Scholar
  60. 60.
    El-Sherif, A.A.: Mixed ligand complex formation reactions and equilibrium studies of Cu(II) with bidentate heterocyclic alcohol (N, O) and some bio-relevant ligands. J. Solution Chem. 39, 131–150 (2010)CrossRefGoogle Scholar
  61. 61.
    El-Sherif, A.A., Shoukry, M.M., Abd-Elgawad, M.M.A.: Protonation equilibria of some selected α-amino acids in DMSO–water mixture and their Cu(II)-complexes. J. Solution Chem. 42, 412–427 (2013)CrossRefGoogle Scholar
  62. 62.
    Doğan, A., Köseoğlu, F., Kılıc, E.: The stability constants of copper(II) complexes with some α-amino acids in dioxane–water mixtures. Anal. Biochem. 295, 237–239 (2001)CrossRefGoogle Scholar
  63. 63.
    Pearson, R.G.: Absolute electronegativity and hardness: applications to organic chemistry. J. Org. Chem. 54, 1423–1430 (1989)CrossRefGoogle Scholar
  64. 64.
    Geerlings, P., De Proft, F., Langenaeker, W.: Conceptual density functional theory. Chem. Rev. 103, 1793–1874 (2003)CrossRefGoogle Scholar
  65. 65.
    Parr, R.G.: Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)CrossRefGoogle Scholar
  66. 66.
    Chattaraj, P.K., Giri, S.: Stability, reactivity, and aromaticity of compounds of a multivalent superatom. J. Phys. Chem. A 111, 11116–11121 (2007)CrossRefGoogle Scholar
  67. 67.
    Speie, G., Csihony, J., Whalen, A.M., Pie-Pont, C.G.: Studies on aerobic reactions of ammonia/3,5-di-tert-butylcatechol Schiff-base condensation products with copper, copper(I), and copper(II). Strong copper(II)–radical ferromagnetic exchange and observations on a unique N–N coupling reaction. Inorg. Chem. 35, 3519–3535 (1996)CrossRefGoogle Scholar
  68. 68.
    Aihara, J.: Reduced HOMO–LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 103, 7487–7495 (1999)CrossRefGoogle Scholar
  69. 69.
    Haddon, R.C., Fukunaga, T.: Absolute hardness as a measure of aromaticity. Tetrahedron Lett. 29, 4843–4846 (1988)CrossRefGoogle Scholar
  70. 70.
    Parr, R.G., Chattara, P.K.: Principle of maximum hardness. J. Am. Chem. Soc. 113, 1854–1855 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceCairo UniversityCairoEgypt

Personalised recommendations