Advertisement

Journal of Solution Chemistry

, Volume 44, Issue 8, pp 1673–1704 | Cite as

Mixed Ligand Complex Formation of Cetirizine Drug with Bivalent Transition Metal(II) Ions in the Presence of 2-Aminomethylbenzimidazole: Synthesis, Structural, Biological, pH-Metric and Thermodynamic Studies

  • Abeer T. Abdelkarim
  • Mohammed M. Al-Shomrani
  • Ahmed M. RayanEmail author
  • Ahmed A. El-Sherif
Article

Abstract

Mononuclear copper(II), cobalt(II) and nickel(II) complexes of cetirizine (CTZ = 2-[2-[4-[(4-chlorophenyl)phenyl methyl]-piperazine-1-yl]-ethoxy]acetic acid) in the presence of 2-aminomethyl-benzimidazole·2HCl (AMBI), as a representative example of heterocyclic bases, were synthesized and studied by different physical techniques. All mixed-ligand complexes have been fully characterized with the help of elemental analyses, molecular weight determinations, molar conductance, magnetic moments and spectroscopic data. The formulae of the isolated complexes are [M(AMBI)(CTZ)(NO3)(H2O)2nH2O where AMBI is the neutral bidentate 2-aminomethylbenzimidazole, CTZ the deprotonated cetirizine and n = 1 for Co(II) or 0 for Cu(II) and Ni(II) complexes. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytes. The formation equilibria of the ternary complexes have been investigated. Ternary complexes are formed by a simultaneous mechanism. Stoichiometry and stability constants for the complexes formed are reported. The concentration distribution of the complexes in solution was evaluated as a function of pH. The thermodynamic parameters were calculated from the temperature dependence of the equilibrium constants and are discussed. The synthesized metal chelates have been screened for their antimicrobial activities against the selected types of Gram-positive (G+) and Gram-negative (G) bacteria. They were found to be more active against Gram positive than Gram negative bacteria. The antimicrobial activity in terms of metal ions obeys this order: Cu(II) > Ni(II) > Co(II).

Keywords

Cetirizine Potentiometry Benzimidazole Electronic spectra Conductance Biological activity 

References

  1. 1.
    Rosette, M.R.: Bioinorganic Chemistry: A Short Course. Wiley, New York (2002)Google Scholar
  2. 2.
    Crichton, R.R.: Biological Inorganic Chemistry, An Introduction. Elsevier, New York (2008)Google Scholar
  3. 3.
    Prakash, O., Kumar, R., Kumar, R., Tyagi, P., Kuhad, R.C.: Organoiodine(III) mediated synthesis of 3,9-diaryl- and 3,9-difuryl-bis-1,2,4-triazolo[4,3-a][4,3-c]pyrimidines as antibacterial agents. Eur. J. Med. Chem. 42, 868–872 (2007)CrossRefGoogle Scholar
  4. 4.
    Zhang, N., Ayral-Kaloustian, S., Nguyen, T., Hernandez, R., Beyer, C.: 2-Cyanoaminopyrimidines as a class of antitumor agents that promote tubulin polymerization. Bioorg. Med. Chem. Lett. 17, 3003–3005 (2007)CrossRefGoogle Scholar
  5. 5.
    Lanier, M.C., Feher, M., Ashweek, N.J., Loweth, C.J., Rueter, J.K., Slee, D.H., Williams, J.P., Zhu, Y.F., Sullivan, S.K., Brown, M.S.: Selection, synthesis, and structure–activity relationship of tetrahydropyrido[4,3-d]pyrimidine-2,4-diones as human GnRH receptor antagonists. Bioorg. Med. Chem. 15, 5590–5603 (2007)CrossRefGoogle Scholar
  6. 6.
    Howell, J.M.C., Gawthorne, J.M.: Copper in Animals and Man, vol. 1 and 2, 1st edn. CRC Press, Boca Raton (1987)Google Scholar
  7. 7.
    El-Sherif, A.A., Shehata, M.R., Shoukry, M.M., Barakat, M.H.: Synthesis, characterization, equilibrium study and biological activity of Cu(II), Ni(II) and Co(II) complexes of polydentate Schiff base ligand. Spectrochim. Acta (A) 96, 889–897 (2012)CrossRefGoogle Scholar
  8. 8.
    El-Sherif, A.A., Aljahdali, M.S.: Protonation, complex formation equilibria, and metal–ligand interaction of salicylaldehyde Schiff bases. J. Coord. Chem. 66, 3423–3468 (2013)CrossRefGoogle Scholar
  9. 9.
    Deegan, C., McCann, M., Devereux, M., Coyle, B., Egan, D.A.: In vitro cancer chemotherapeutic activity of 1,10-phenanthroline (phen), [Ag-2(phen)3(mal)]·2H2O, [Cu(phen)2(mal)]·2H2O and [Mn(phen)2(mal)]·2H2O (malH2 = malonic acid) using human cancer cells. Cancer Lett. 247, 224–233 (2007)CrossRefGoogle Scholar
  10. 10.
    Aljahdali, M.S., El-Sherif, A.A., Hilal, R.H., Abdel-Karim, A.T.: Mixed bivalent transition metal complexes of 1,10-phenanthroline and 2, aminomethylthiophenyl-4-bromosalicylaldehyde Schiff base: Spectroscopic, molecular modeling and biological activities. Eur. J. Chem. 4, 370–378 (2013)CrossRefGoogle Scholar
  11. 11.
    Urquiza, N.M., Islas, M.S., Dittler, M.L., Moyano, M.A., Manca, S.G., Lezama, L., Rojo, T., Medina, J.J.M., Diez, M., Tevez, L.L., Williams, P.A.M., Ferrer, E.G.: Inhibition behavior on alkaline phosphatase activity, antibacterial and antioxidant activities of ternary methimazole–phenanthroline–copper(II) complex. Inorg. Chim. Acta 405, 243–251 (2013)CrossRefGoogle Scholar
  12. 12.
    Alomar, K., Landreau, A., Kempf, M., Khan, M.A., Allain, M., Bouet, G.: Synthesis, crystal structure, characterization of zinc(II), cadmium(II) complexes with 3-thiophene aldehyde thiosemicarbazone (3TTSCH). Biological activities of 3TTSCH and its complexes. J. Inorg. Biochem. 104, 397–404 (2010)CrossRefGoogle Scholar
  13. 13.
    Joseph, J., Nagashri, K., Janaki, G.B.: Novel metal based anti-tuberculosis agent: Synthesis, characterization, catalytic and pharmacological activities of copper complexes. Eur. J. Med. Chem. 49, 151–163 (2012)CrossRefGoogle Scholar
  14. 14.
    Agotegaray, M.A., Dennehy, M., Boeris, M.A., Grela, M., Burrow, R.A., Quinzani, O.V.: Therapeutic properties, SOD and catecholase mimetic activities of novel ternary copper(II) complexes of the anti-inflammatory drug Fenoprofen with imidazole and caffeine. Polyhedron 34, 74–83 (2012)CrossRefGoogle Scholar
  15. 15.
    Agency for Toxic Substances and Diseases Registry, Toxicological Profile for Cobalt. US Department of Health and Human Services (2004)Google Scholar
  16. 16.
    Poellot, R.A., Shuler, T.R., Uthus, E.O., Nielsen, F.H.: Dietray margaric acid affects the response to nickel deprivation and the interaction between nickel and vitamin B12 in the rat. Proc. Natl. Acad. Sci. USA 44, 80–85 (1990)Google Scholar
  17. 17.
    Nielsen, F.H.: Effect of form of iron on the interaction between nickel and iron in rats: growth and blood parameters. J. Nutr. 110, 965–973 (1980)Google Scholar
  18. 18.
    Kaim, W., Schwederski, B.: Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life. Wiley, New York (1996)Google Scholar
  19. 19.
    Murray, R.K., Granner, D.K., Mayes, P.A., Rodwell, V.W.: Harper’s Biochemistry 2, 1st edn. Appleton and Lange, East Norwalk (1988)Google Scholar
  20. 20.
    Kratz, F., Nuber, B., Weiss, J., Keppler, B.K.: Synthesis and characterization of potential antitumour and antiviral gallium(III) complexes of N-heterocycles. Polyhedron 11, 487–498 (1992)CrossRefGoogle Scholar
  21. 21.
    Kucubkbay, H., Durmaz, B.: Arzneimittel-Forschung, antifungal activity of organic and organometallic derivatives of benzimidazole and benzothiazole. Drug Res. 47, 667–670 (1997)Google Scholar
  22. 22.
    Mylonas, S., Valavanidis, A., Dimitropoulos, K., Polissiou, M., Tsiftsoglou, A.S., Vizirianakis, I.S.: Synthesis, molecular structure determination and antitumor activity of Pt(II) and Pd(II) complexes of 2-substituted benzimidazole. J. Inorg. Biochem. 34, 265–275 (1988)CrossRefGoogle Scholar
  23. 23.
    Kabanos, T.A., Kersmidas, A.D., Mentzafos, D., Russo, U., Terzis, A., Tsangaris, J.M.: Synthesis, structural and physical studies of tin(IV) complexes with 2-(2-pyridyl)benzimidazole. J. Chem. Soc. Dalton Trans. 18, 2729–2733 (1992)CrossRefGoogle Scholar
  24. 24.
    Biddle, B.N., Gray, J.S.: Structural effects on the antitumour activity of organotin compounds. Further diaryltin dichloride complexes with nitrogen-donor ligands. Appl. Organomet. Chem. 5, 439–441 (1991)CrossRefGoogle Scholar
  25. 25.
    Skalitzky, D.J., Marakovits, J.T., Maegley, K.A., Ekker, A., Yu, X.-H., Hostomsky, Z., Webber, S.E., Eastman, B.W., Almassy, R., Li, J., Cortin, N.J., Newell, D.R., Calvert, A.H., Griffin, R.J., Golding, B.T.: Tricyclic benzimidazoles as potent poly(ADP-ribose) polymerase-1 inhibitors. J. Med. Chem. 46, 210–213 (2003)CrossRefGoogle Scholar
  26. 26.
    Lalezari, J.P., Aberg, J.A., Wang, L.H., Wire, M.B., Miner, R., Snowden, W., Talarico, C.L., Shaw, S., Jacobson, M.A., Drew, W.L.: Phase I dose escalation trial evaluating the pharmacokinetics, anti-human cytomegalovirus (HCMV) activity, and safety of 1263W94 in human immunodeficiency virus-infected men with asymptomatic HCMV shedding. Antimicrob. Agents Chemother. 46, 2969–2976 (2002)CrossRefGoogle Scholar
  27. 27.
    Moreno, M.J.S., Botello, A.F., Coca, R.B.G., Griesser, R., Ochocki, J., Kotynski, A., Gutierrez, J.N., Moreno, V., Sigel, H.: Metal ion-binding properties of (1H-benzimidazol-2-yl-methyl)phosphonate (Bimp2-) in aqueous solution. Isomeric equilibria, extent of chelation, and a new quantification method for the chelate effect. Inorg. Chem. 43, 1311–1322 (2004)CrossRefGoogle Scholar
  28. 28.
    El-Sherif, A.A.: Mixed–ligand complexes of 2-(aminomethyl)benzimidazole palladium(ii) with various biologically relevant ligands. J. Solution Chem. 35, 1287–1301 (2006)CrossRefGoogle Scholar
  29. 29.
    Emanuel, M.B.: Histamine and the antiallergic antihistamines: a history of their discoveries. Clin. Exp. Allergy 29, 1–11 (1999)Google Scholar
  30. 30.
    Aljahdali, M.S., Abedelkarim, A.T., El-Sherif, A.A.: Potentiometry, stability and thermodynamics of diethyltin(iv) dichloride with some selected biomolecules. J. Solution Chem. 42, 2240–2266 (2013)CrossRefGoogle Scholar
  31. 31.
    El-Sherif, M.M., Shoukry, M.M., Hosny, W.M., Abd-Elmoghny, M.G.: Complex formation equilibria of unusual seven-coordinate Fe(EDTA) complexes with DNA constituents and related bio-relevant ligands. J. Solution Chem. 41, 813–827 (2012)CrossRefGoogle Scholar
  32. 32.
    El-Dissouky, A., Shuaib, N.M., Al-awadi, N.A., Abbas, A.B., El-Sherif, A.A.: Synthesis, characterization, potentiometric and thermodynamic studies of transition metal complexes with 1-benzotriazol-1-yl-1-[(p-methoxyphenyl) hydrazono]propan-2-one. J. Coord. Chem. 61, 579–594 (2008)CrossRefGoogle Scholar
  33. 33.
    El-Sherif, A.A.: Kinetics and mechanism for hydrolysis of α-amino acid esters in mixed ligand complexes with Zn(II)–nitrilo-tris(methyl phosphonic acid. J. Solution Chem. 41, 249–260 (2012)CrossRefGoogle Scholar
  34. 34.
    Aljahdali, M., El-Sherif, A.A.: Equilibrium studies of binary and mixed-ligand complexes of zinc(II) Involving 2-(aminomethyl)-benzimidazole and some bio-relevant ligands. J. Solution Chem. 41, 1759–1776 (2012)CrossRefGoogle Scholar
  35. 35.
    El-Sherif, A.A.: Synthesis, solution equilibria and antibacterial activity of Co(II) with 2-(aminomethyl)-benzimidazole and dicarboxylic acids. J. Solution Chem. 39, 1562–1581 (2010)CrossRefGoogle Scholar
  36. 36.
    Bauer, A.W., Kirby, W.M., Sherris, C., Turck, M.: Antibiotic susceptibility testing by a standardized single disk method. J. Am. Clin Path. 45, 493–499 (1966)Google Scholar
  37. 37.
    Aljahdali, M.S., El-Sherif, A.A., Shoukry, M.M., Mohamed, S.E.: Potentiometric and thermodynamic studies of binary and ternary transition metal(II) complexes of imidazole-4-acetic acid and some bio-relevant ligands. J. Solution Chem. 42, 1028–1050 (2013)CrossRefGoogle Scholar
  38. 38.
    El-Sherif, A.A.: Synthesis and characterization of some potential antitumor palladium(II) complexes of 2-aminomethylbenzimidazole and amino acids. J. Coord. Chem. 64, 1240–1253 (2011)CrossRefGoogle Scholar
  39. 39.
    Gans, P., Sabatini, A., Vacca, A.: An improved computer program for the computation of formation constants from potentiometric data. Inorg. Chim. Acta 18, 237–239 (1976)CrossRefGoogle Scholar
  40. 40.
    L. Pettit.: University of Leeds, Personal Communication (1993)Google Scholar
  41. 41.
    El-Sherif, A.A.: Synthesis, spectroscopic characterization and biological activity on newly synthesized copper(II) and nickel(II) complexes incorporating bidentate oxygen–nitrogen hydrazone ligands. Inorg. Chim. Acta 362, 4991–5000 (2009)CrossRefGoogle Scholar
  42. 42.
    García-Raso, A., Fiol, J.J., Adrover, B., Molins, E., Miravitlles, C.: X-ray diffraction structure of a ternary copper(II) peptide complex (benzimidazole) (glycylglycinato) copper(II) trihydrate. Polyhedron 15, 1829–1834 (1996)CrossRefGoogle Scholar
  43. 43.
    Dimiza, F., Papadopoulos, A.N., Tangoulis, V., Psycharis, V., Raptopoulou, C.P., Kessissoglou, D.P., Psomas, G.: Biological evaluation of cobalt(II) complexes with non-steroidal anti-inflammatory drug naproxen. J. Inorg. Biochem. 107, 54–64 (2012)CrossRefGoogle Scholar
  44. 44.
    Mehrotra, R.C., Bohra, R.: Metal Carboxylates, p. 48. Academic Press, New York (1983)Google Scholar
  45. 45.
    Colthup, N.B., Daly, L.H., Wiberley, S.E.: Introduction to Infrared and Raman Spectroscopy, 3rd edn. Academic Press, Boston (1990)Google Scholar
  46. 46.
    Decon, G.B., Philips, R.J.: Relationships between the carbon–oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Rev. 33, 227–250 (1980)CrossRefGoogle Scholar
  47. 47.
    Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn. Wiley, New York (1986)Google Scholar
  48. 48.
    Gatehouse, B.M., Livingstone, S.E., Nyholm, R.S.: Infrared spectra of some nitrato and other oxy-anion co-ordination complexes. J. Inorg. Nucl. Chem. 8, 75–80 (1958)CrossRefGoogle Scholar
  49. 49.
    Mukherjee, G., Poddar, S.N., Chaudhury, K., Dey, K.: NS and NSO-donor ligands and their metal complexes. Synthesis and characterisation of a new low-spin iron(III) complex with 1,2-di(o-aminophenylthio)ethane and iron(III), cobalt(III) and manganese(III) complexes of 1,2-di(o-salicylaldiminophenylthio)ethane. Trans. Met. Chem. 13, 58–63 (1988)CrossRefGoogle Scholar
  50. 50.
    Geary, W.J.: The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 7, 81–122 (1971)CrossRefGoogle Scholar
  51. 51.
    Thompson, L.K., Lee, F.L., Gabe, E.J.: Variable antiferromagnetic exchange in a series of binuclear copper(II) complexes of tetradentate (N4) and hexadentate (N6) diazine ligands. Magnetism versus structure, bridging and terminal ligand groups, and chelate ring size. Inorg. Chem. 27, 39–47 (1988)CrossRefGoogle Scholar
  52. 52.
    Ertem, G., West, D.X.: N-butyl-, N-iso-butyl- and N-sec-butyl-2-picolinamine N-oxide complexes derived from copper(II) salts of polyatomic anions. Trans. Met. Chem. 9, 412–416 (2013)CrossRefGoogle Scholar
  53. 53.
    Narang, K.K., Pandey, J.P., Singh, V.P.: Synthesis, characterization and physicochemical studies of some copper(II) tetrathiocyanato dithallate(I) complexes with hydrazides and hydrazones. Polyhedron 13, 529–538 (1994)CrossRefGoogle Scholar
  54. 54.
    Bertoncello, K., Fallon, G.D., Murray, K.S., Tiekink, E.R.T.: Manganese(III) complexes of a binucleating Schiff-base ligand based on the 1,3-diaminopropan-2-ol backbone. Inorg. Chem. 30, 3562–3568 (1991)CrossRefGoogle Scholar
  55. 55.
    Figgins, B.P.: Introduction to Ligand Fields. Wiley, New York (1976)Google Scholar
  56. 56.
    El-Sherif, A.A., Shoukry, M.M., Abd-Elgawad, M.A.: Synthesis, characterization, biological activity and equilibrium studies of metal(II) ion complexes with tridentate hydrazone ligand derived from hydralazine. Spectrochim. Acta (A) 98, 307–321 (2012)CrossRefGoogle Scholar
  57. 57.
    Earnshaw, A.: Introduction to Magnetochemistry. Academic Press, London (1968)Google Scholar
  58. 58.
    König, E.: The Nephelauxetic Effect. Structure and Bonding, vol. 175, p. 9. Springer, New York (1971)Google Scholar
  59. 59.
    Sacconi, L.: Structural studies on isoxazole derivatives: The crystal and molecular structures of tetra(3-amino-5-methylisoxazole)bis(isothiocyanate)-nickel(II) and tetra(3-amino-5-methylisoxazole)bromocopper(II) bromide. Trans. Met. Chem. 4, 199–204 (1968)Google Scholar
  60. 60.
    Chandra, S., Gupta, L.K.: EPR and electronic spectral studies on Co(II), Ni(II) and Cu(II) complexes with a new tetradentate [N4] macrocyclic ligand and their biological activity. Spectrochim. Acta (A) 60, 1563 (2004)CrossRefGoogle Scholar
  61. 61.
    Singh, N.K., Singh, S.B.: Complexes of 1-isonicotinoyl-4-benzoyl-3-thiosemicarbazide with manganese(II), iron(III), chromium(III), cobalt(II), nickel(II), copper(II) and zinc(II). Trans. Met. Chem. 26, 487–495 (2001)CrossRefGoogle Scholar
  62. 62.
    Athar, F., Arjmand, F., Tabassum, S.: New asymmetric N2S2 macrocycles, their metal chelates and the photokinetics of DNA-complex interaction. Trans. Met. Chem. 26, 426–429 (2001)CrossRefGoogle Scholar
  63. 63.
    Lever, A.B.P.: Inorganic Electronic Spectroscopy, 2nd edn. Elsevier, New York (1984)Google Scholar
  64. 64.
    Cotton, F.A., Wilkinson, G., Murillo, C.A., Bochmann, M.: Advanced Inorganic Chemistry, 6th edn. Wiley, New York (2003)Google Scholar
  65. 65.
    El-Sawaf, A.K., West, D.X., El-Saied, F.A., El-Bahnasawy, R.M.: Copper(II) complexes of 4-formylantipyrine N(4)-substituted thiosemicarbazones. Trans. Met. Chem. 22, 360–365 (1997)CrossRefGoogle Scholar
  66. 66.
    Kauffman, G.B., Karbassi, M., Kyuno, E., Birdsall, W.J., Kylanpaa, P.E.A.: Tris(glycinato) cobalt. Inorg. Synth. 25, 135–139 (1989)CrossRefGoogle Scholar
  67. 67.
    Young, R.S.: Cobalt, Its Chemistry, Metallurgy and Uses. Reinhold Publ. Corp, New York (1960)Google Scholar
  68. 68.
    Chandra, S., Gupta, L.K.: Spectroscopic and biological studies on newly synthesized nickel(II) complexes of semicarbazones and thiosemicarbazones. Spectrochim. Acta (A) 62, 1089–1094 (2005)CrossRefGoogle Scholar
  69. 69.
    El-Sawaf, A.K., West, D.X., El-Saied, F.A., El-Bahnasawy, R.M.: Synthesis, magnetic and spectral studies of iron(III), cobalt(II, III), nickel(II), copper(II) and zinc(II) complexes of 4-formyl-antipyrine N(4)-antipyrinylthiosemicarbazone. Trans. Met. Chem. 23, 565–572 (1998)CrossRefGoogle Scholar
  70. 70.
    Massacesi, M., Ponticelli, D.G., Addepalli, V.B., Krishnan, V.G.: Anion and symmetry effects on the ESR spectra of copper complexes. J. Mol. Struct. 51, 27–36 (1979)CrossRefGoogle Scholar
  71. 71.
    Hathaway, B.J., Billing, D.E.: The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord. Chem. Rev. 5, 143–207 (1970)CrossRefGoogle Scholar
  72. 72.
    Raman, N., Jeyamurugan, R., Subbulakshmi, M., Boominathan, R., Yuvarajan, C.R.: Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base. Chem. Papers 64, 318–328 (2010)CrossRefGoogle Scholar
  73. 73.
    Denbigh, K.: Principles of Chemical Equilibrium. Cambridge University Press, London (1955)Google Scholar
  74. 74.
    El-Sherif, A.A.: Coordination chemistry of palladium(II) ternary complexes with relevant biomolecules. In: Stoichiometry and Research (ed.) The importance of Quantity in Biomedicine, pp. 79–120. In-Tech Publisher, Rijeka (2012)Google Scholar
  75. 75.
    Martell, A.E., Smith, R.M.L.: Amino Acids, Critical Stability Constants. Plenum Press, New York (1974)Google Scholar
  76. 76.
    Huheey, J.E.: Inorganic Chemistry-Principles of Structure and Reactivity. Harper SI Edn, New York (1983)Google Scholar
  77. 77.
    Khan, M.A., Bouet, G., Vierling, F., Meullemeestre, J., Schwing, M.J.: Formation of cobalt(II), nickel(II) and copper(II) chloro complexes in alcohols and the Irving–Williams order of stabilities. Trans. Met. Chem. 21, 231–234 (1996)CrossRefGoogle Scholar
  78. 78.
    El-Sherif, A.A., Shoukry, M.M., Abobakr, L.O.: Bivalent transition metal complexes of cetirizine: Spectroscopic, equilibrium studies and biological activity. J. Spectrochim. Acta A 112, 290–300 (2013)CrossRefGoogle Scholar
  79. 79.
    Beck, M.T.: Chemistry of Complex Equilibria. Akademiai Kiado, Budapest (1970)Google Scholar
  80. 80.
    Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry. Wiley, London (1962)Google Scholar
  81. 81.
    Sigel, H.: Coordination Chemistry, vol. 20. Pergamon Press, Oxford (1980)Google Scholar
  82. 82.
    Maskos, K.: The interaction of metal ions with nucleic acids. A nuclear magnetic resonance relaxation time study of the copper(II)–inosine-50-monophosphate system in solution. Acta Biochim. Polonica 28, 183–200 (1981)Google Scholar
  83. 83.
    Martin, R.B., Prados, R.: Some factors influencing mixed complex formation. J. Inorg. Nucl. Chem. 36, 1665–1670 (1974)CrossRefGoogle Scholar
  84. 84.
    DeWitt, R., Watters, J.I.: Spectrophotometric investigation of a mixed complex of copper(II) ion with oxalate ion and ethylenediamine. J. Am. Chem. Soc. 76, 3810–3814 (1954)CrossRefGoogle Scholar
  85. 85.
    Bonomo, R.P., Musumeci, S., Rizzarelii, E., Sammartano, S.: Complexes of Cu(II) with 2,2′-dipyridyl and some cycloalkane-1,1-dicarboxylic acids. Inorg. Chim. Acta 14, 251–257 (1975)CrossRefGoogle Scholar
  86. 86.
    Phillips, C.S.G., Williams, R.J.P.: Inorganic Chemistry, vol. 2, p. 268. Oxford University Press, Oxford (1966)Google Scholar
  87. 87.
    Irving, H., Williams, R.J.P.: Some factors controlling the selectivity of organic reagents. Analyst (London) 77, 813–829 (1952)CrossRefGoogle Scholar
  88. 88.
    Harlly, F.R., Burgess, R.M., Alcock, R.M.: Solution Equilibria, p. 257. Ellis Harwood, Chichester (1980)Google Scholar
  89. 89.
    Koch, A.L.: Bacterial wall as target for attack past, present, and future research. Clin. Microbiol. Rev. 16, 673–684 (2003)CrossRefGoogle Scholar
  90. 90.
    Tweedy, B.G.: Plant extracts with metal ions as potential antimicrobial agents. Phytopathology 55, 910–914 (1964)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Abeer T. Abdelkarim
    • 1
  • Mohammed M. Al-Shomrani
    • 2
  • Ahmed M. Rayan
    • 3
    • 4
    Email author
  • Ahmed A. El-Sherif
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  3. 3.Department of Chemistry, Faculty of Arts and ScienceNorthern Border UniversityRafha-156Kingdom of Saudi Arabia
  4. 4.Department of Science and Mathematics, Faculty of EducationUniversity of AssiutThe New ValleyEgypt

Personalised recommendations