Journal of Solution Chemistry

, Volume 44, Issue 7, pp 1424–1451 | Cite as

A New Pitzer Parameterization for the Binary NaOH–H2O and Ternary NaOH–NaCl–H2O and NaOH–LiOH–H2O Systems up to NaOH Solid Salt Saturation, from 273.15 to 523.15 K and at Saturated Vapor Pressure

  • Adeline Lach
  • Laurent André
  • Arnault Lassin
  • Mohamed Azaroual
  • Jean-Paul Serin
  • Pierre Cézac


This paper presents a new set of Pitzer ion interaction model parameters for the binary NaOH–H2O system for concentrations up to over 30 mol·kg−1 and temperatures ranging from 273.15 to 523.15 K. Assuming that the electrolyte is only partially dissociated, the model requires the adjustment of (i) the three classical binary interaction parameters β (0), β (1) and C ϕ , (ii) the equilibrium constant of formation of the aqueous complex NaOH0(aq), and iii) one binary (λ NaOH/NaOH) and one ternary (\( \zeta_{{{\text{NaOH}}/{\text{Na}}^{ + } /{\text{OH}}^{-} }} \)) interaction parameter. This approach, which provides much better results than the approach of treating NaOH as a fully dissociated electrolyte, was chosen to extend the description of the system to high temperatures and high concentrations. The temperature functions of the solubility products of anhydrous NaOH(cr) and five hydrated salts, NaOH·nH2O(cr) (where n = 1, 2, 3.11, 3.5, 4α), were determined. In order to evaluate the quality of the new set of parameters, several tests were run on various properties using various literature data. These include the boiling point elevation in the NaOH–H2O system and the phase diagrams of the two ternary systems NaOH–NaCl–H2O and NaOH–LiOH–H2O. Interaction parameters for the two related binary systems NaCl–H2O and LiOH–H2O were taken from previous studies. To ensure consistency, four new mixing parameters were revised (\( \zeta_{{{\text{Na}}^{ + } /{\text{Cl}}^{-} /{\text{NaOH}}}} \) and \( \varPsi_{{{\text{Cl}}^{-} /{\text{OH}}^{-} /{\text{Na}}^{ + } }} \) for the ternary system NaOH–NaCl–H2O and \( \lambda_{{{\text{Li}}^{ + } /{\text{NaOH}}}} \) and \( \varPsi_{{{\text{OH}}^{ - } /{\text{Na}}^{ + } /{\text{Li}}^{ + } }} \) for the ternary system NaOH–LiOH–H2O). Consistent with Pitzer’s equations, our new set of parameters can be used to satisfactorily describe the quaternary Na+–Li+–Cl–OH–H2O system to very high concentrations and temperatures.


Sodium hydroxide Pitzer model High salinities Thermodynamic excess properties 



This work was funded by BRGM, the French Geological Survey. The authors thank the LABEX Voltaire (ANR-10-LABX-100-01). The authors warmly thank Christomir Christov and an anonymous reviewer for their reviews of this manuscript.

Supplementary material

10953_2015_357_MOESM1_ESM.docx (206 kb)
The online version of this article (doi: 10.1007/s10953-15-……) contains supplementary material, which is available to authorized users. Supplementary material 1 (DOCX 206 kb)


  1. 1.
    Li, J., Polka, H.-M., Gmehling, J.: A g E model for single and mixed solvent electrolyte systems: 1. Model and results for strong electrolytes. Fluid Phase Equilib. 94, 89–114 (1994)CrossRefGoogle Scholar
  2. 2.
    Chen, C., Britt, H.I., Boston, J.F., Evans, L.B.: Local composition model for excess Gibbs energy of electrolyte systems. Part I: single solvent, single completely dissociated electrolyte systems. AIChE J. 28, 588–596 (1982)CrossRefGoogle Scholar
  3. 3.
    Abovsky, V., Liu, Y., Watanasiri, S.: Representation of nonideality in concentrated electrolyte solutions using the electrolyte NRTL model with concentration-dependent parameters. Fluid Phase Equilib. 150–151, 277–286 (1998)CrossRefGoogle Scholar
  4. 4.
    Thomsen, K.: Aqueous Electrolytes Model Parameters and Process Simulation, (1997)
  5. 5.
    Zhao, E., Yu, M., Sauvé, R.E., Khoshkbarchi, M.K.: Extension of the Wilson model to electrolyte solutions. Fluid Phase Equilib. 173, 161–175 (2000)CrossRefGoogle Scholar
  6. 6.
    Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)CrossRefGoogle Scholar
  7. 7.
    Greenberg, J.P., Møller, N.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the system to high concentration from 0 to 250 °C. Geochim. Cosmochim. Acta 53, 2503–2518 (1989)CrossRefGoogle Scholar
  8. 8.
    Harvie, C.E., Møller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 °C. Geochim. Cosmochim. Acta 48, 723–751 (1984)CrossRefGoogle Scholar
  9. 9.
    Christov, C.: Thermodynamics of formation of double salts and mixed crystals from aqueous solutions. J. Chem. Thermodyn. 37, 1036–1060 (2005)CrossRefGoogle Scholar
  10. 10.
    Pickering, S.U.: LXI—the hydrates of sodium, potassium, and lithium hydroxides. J. Chem. Soc. 63, 890–909 (1893)CrossRefGoogle Scholar
  11. 11.
    Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)CrossRefGoogle Scholar
  12. 12.
    Pabalan, R.T., Pitzer, K.S.: Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na–K–Mg–Cl–SO4–OH–H2O. Geochim. Cosmochim. Acta 51, 2429–2443 (1987)CrossRefGoogle Scholar
  13. 13.
    Pabalan, R.T., Pitzer, K.S.: Thermodynamics of NaOH(aq) in hydrothermal solutions. Geochim. Cosmochim. Acta 51, 829–837 (1987)CrossRefGoogle Scholar
  14. 14.
    Simonson, J.M., Mesmer, R.E., Rogers, P.S.Z.: The enthalpy of dilution and apparent molar heat capacity of NaOH(aq) to 523 K and 40 MPa. J. Chem. Thermodyn. 21, 561–584 (1989)CrossRefGoogle Scholar
  15. 15.
    Petrenko, S.V., Pitzer, K.S.: Thermodynamics of aqueous NaOH over the complete composition range and to 523 K and 400 MPa. J. Phys. Chem. B. 101, 3589–3595 (1997)CrossRefGoogle Scholar
  16. 16.
    Christov, C., Møller, N.: Chemical equilibrium model of solution behavior and solubility in the H-Na–K–OH–Cl–HSO4–SO4–H2O system to high concentration and temperature. Geochim. Cosmochim. Acta 68, 1309–1331 (2004)CrossRefGoogle Scholar
  17. 17.
    Debye, P., Hückel, E.: Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys. Zeitschrift. 24, 185–206 (1923)Google Scholar
  18. 18.
    Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes. J. Solution Chem. 3, 539–546 (1974)CrossRefGoogle Scholar
  19. 19.
    Pitzer, K.S., Kim, J.J.: Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96, 5701–5707 (1974)CrossRefGoogle Scholar
  20. 20.
    Kim, H.T., Frederick, W.J.: Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 °C. 1. Single salt parameters. J. Chem. Eng. Data 33, 177–184 (1988)CrossRefGoogle Scholar
  21. 21.
    Ananthaswamy, J., Atkinson, G.: Thermodynamics of concentrated electrolyte mixtures. 5. A review of the thermodynamic properties of aqueous calcium chloride in the temperature range 273.15–373.15 K. J. Chem. Eng. Data 30, 120–128 (1985)CrossRefGoogle Scholar
  22. 22.
    Anstiss, R.G., Pitzer, K.S.: Thermodynamics of very concentrated aqueous electrolytes: LiCl, ZnCl2, and ZnCl2–NaCl at 25 °C. J. Solution Chem. 20, 849–858 (1991)CrossRefGoogle Scholar
  23. 23.
    Pitzer, K.S., Wang, P., Rard, J.A., Clegg, S.L.: Thermodynamics of electrolytes. 13. Ionic strength dependence of higher-order terms; equations for CaCl2 and MgCl2. J. Solution Chem. 28, 265–282 (1999)CrossRefGoogle Scholar
  24. 24.
    Pitzer, K.S., Silvester, L.F.: Thermodynamics of electrolytes. VI. Weak electrolytes including H3PO4. J. Solution Chem. 5, 269–278 (1976)CrossRefGoogle Scholar
  25. 25.
    Holmes, H.F., Mesmer, R.E.: Isopiestic studies of H3PO4(aq) at elevated temperatures. J. Solution Chem. 28, 327–340 (1999)CrossRefGoogle Scholar
  26. 26.
    Jiang, C.: Thermodynamics of aqueous phosphoric acid solution at 25 °C. Chem. Eng. Sci. 51, 689–693 (1996)CrossRefGoogle Scholar
  27. 27.
    Cherif, M., Mgaidi, A., Ammar, M.N., Abderrabba, M., Fürst, W.: Modelling of the equilibrium properties of the system H3PO4–H2O: representation of VLE and liquid phase composition. Fluid Phase Equilib. 175, 197–212 (2000)CrossRefGoogle Scholar
  28. 28.
    Lassin, A., Christov, C., André, L., Azaroual, M.: A thermodynamic model of aqueous electrolyte solution behavior and solid–liquid equilibrium in the Li–H–Na–K–Cl–OH–LiCl0(aq)–H2O system to very high concentrations (40 molal) and from 0 to 250 °C. Am. J. Sci. 315, 204–256 (2015)CrossRefGoogle Scholar
  29. 29.
    Parkhurst, D. L., Appelo, C. A. J.: User‘s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey (1999)Google Scholar
  30. 30.
    Clegg, S.L., Whitfield, M.: Activity coefficient in natural waters. In: Pitzer, K.S. (ed.) Activity Coefficient in Electrolyte Solutions, pp. 279–434. CRC Press, Boca Raton (1991)Google Scholar
  31. 31.
    Filippov, V.K., Charykov, N.A., Solechnik, N.D.: Thermodynamics of the systems Ni//Cl, SO4–H2O and Co//Cl, SO4–H2O at 25 °C. Russ. J. Appl. Chem. 58, 1811–1814 (1985)Google Scholar
  32. 32.
    Møller, N.: The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na–Ca–Cl–SO4–H2O system, to high temperature and concentration. Geochim. Cosmochim. Acta 52, 821–837 (1988)CrossRefGoogle Scholar
  33. 33.
    Hamer, W.J., Wu, Y.-C.: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–1100 (1972)CrossRefGoogle Scholar
  34. 34.
    Robinson, R.A., Stokes, R.H.: Tables of osmotic and activity coefficients of electrolytes in aqueous solution at 25 °C. Trans. Faraday Soc. 45, 612–624 (1949)CrossRefGoogle Scholar
  35. 35.
    Kangro, W., Groeneveld, A.: Konzentrierte wäßrige Lösungen. I. Z. Phys. Chem. 32, 110–126 (1962)CrossRefGoogle Scholar
  36. 36.
    Dibrov, I., Mal’tsev, G., Mashovets, V.: Saturated vapor pressure of caustic soda and sodium aluminate solutions in the 25–350 °C temperature range over a wide range of concentrations. J. Appl. Chem. USSR. 37, 1907–1915 (1964)Google Scholar
  37. 37.
    Campbell, A.N., Bhatnagar, O.N.: Osmotic and activity coefficients of sodium hydroxide in water from 150 to 250 °C. J. Chem. Eng. Data. 29, 166–168 (1984)CrossRefGoogle Scholar
  38. 38.
    Krumgalz, B., Mashovets, V.: Vapor pressure of NaOH solutions (of over 45% concentration) at temperatures up to 400 °C. J. Appl. Chem. USSR. 37 (1964)Google Scholar
  39. 39.
    Holmes, H.F., Mesmer, R.E.: Isopiestic molalities for aqueous solutions of the alkali metal hydroxides at elevated temperatures. J. Chem. Thermodyn. 30, 311–326 (1998)CrossRefGoogle Scholar
  40. 40.
    Cohen-Adad, R., Tranquard, A., Péronne, R., Negri, P., Rollet, A.-P.: Le système eau–hydroxyde de sodium. Compte rendus l’académie des Sci. 251, 2035–2037 (1960)Google Scholar
  41. 41.
    Zdanovskii, A.B., Solov’eva, E.F., Lyakhovskaya, E.I., Shestakov, N.E., Shleimovich, R.E., Abutkova, L.M.: Experimental Solubility Data on Salt–Water Systems. Vol. 1, Three Component Systems, 2nd edn., Corrected and Completed, 1070 pp. “Chemistry” Publishing, Leningrad (in Russian) (1973)Google Scholar
  42. 42.
    Linke, W.: Solubilities Inorganic and Metal–Organic Compounds, 4th edn., American Chemical Society (1958)Google Scholar
  43. 43.
    Lindsay, W.T. Jr.: Chemistry of steam cycle solutions: principles. In: Cohen, P. (ed.) The ASME Handbook on Water Technology for Thermal Power Systems, pp. 341–544. American Society of Mechanical Engineers (1989)Google Scholar
  44. 44.
    Chen, X., Gillespie, S.E., Oscarson, J.L., Izatt, R.M.: Enthalpy of dissociation of water at 325 °C and logK, ΔH, ΔS, and ΔCp values for the formation of NaOH(aq) from 250 to 325 °C. J. Solution Chem. 21, 803–824 (1992)CrossRefGoogle Scholar
  45. 45.
    Ho, P.C., Palmer, D.A.: Ion association of dilute aqueous sodium hydroxide solutions to 600 °C and 300 MPa by conductance measurements. J. Solution Chem. 25, 711–729 (1996)CrossRefGoogle Scholar
  46. 46.
    Ho, P., Palmer, D., Wood, R.: Conductivity measurements of dilute aqueous LiOH, NaOH, and KOH solutions to high temperatures and pressures using a flow-through cell. J. Phys. Chem. B. 104, 12084–12089 (2000)CrossRefGoogle Scholar
  47. 47.
    Fuangswasdi, S., Oscarson, J.: Enthalpies of dilution of NaOH, KOH, and HCl and thermodynamic quantities for the formation of these species from their constituent ions in aqueous solution from 300 °C. Ind. Eng. Chem. Res. 39, 3508–3515 (2000)CrossRefGoogle Scholar
  48. 48.
    Bianchi, H., Corti, H., Fernandez-Prini, R.: Electrical conductivity of aqueous sodium hydroxide solutions at high temperatures. J. Solution Chem. 23, 1203–1212 (1994)CrossRefGoogle Scholar
  49. 49.
    Gimblett, F., Monk, C.: Emf studies of electrolytic dissociation. Part 7.—Some alkali and alkaline earth metal hydroxides in water. Trans. Faraday Soc. 50, 965–972 (1954)CrossRefGoogle Scholar
  50. 50.
    Sharma, S.K., Kashyap, S.C.: Ionic interaction in alkali metal hydroxide solutions—a Raman spectral investigation. J. Inorg. Nucl. Chem. 34, 3623–3630 (1972)CrossRefGoogle Scholar
  51. 51.
    Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttal, R.L.: The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data. 11(Supp. No. 2), 393 pp. (1982)Google Scholar
  52. 52.
    Ge, X., Wang, X.: Estimation of freezing point depression, boiling point elevation, and vaporization enthalpies of electrolyte solutions. Ind. Eng. Chem. Res. 48, 2229–2235 (2009)CrossRefGoogle Scholar
  53. 53.
    Lide, D.: CRC Handbook of Chemistry and Physics, 88th edn. CRC Press, Boca Raton (2007)Google Scholar
  54. 54.
    Kirschstein, G.: Physikalische Eigenschaften der festen Salze. In: Kirschstein, G. (ed.) Gmelin Handbook of Inorganic and Organometallic Chemistry. Springer, Berlin (1972), p. 226Google Scholar
  55. 55.
    Bialik, M., Sedin, P., Theliander, H.: Boiling point rise calculations in sodium salt solutions. Ind. Eng. Chem. Res. 47, 1283–1287 (2008)CrossRefGoogle Scholar
  56. 56.
    Haltenberger, W.: Enthalpy–concentration charts from vapor pressure data. Ind. Eng. Chem. 31, 783–786 (1939)CrossRefGoogle Scholar
  57. 57.
    Chase, M.W.J.: NIST-JANAF Thermochemical tables. J. Phys. Chem. Ref. Data, Monogr. 9, 1–1951 (1998)Google Scholar
  58. 58.
    Blanc, P., Lassin, A., Piantone, P.: Thermoddem a database devoted to waste minerals. (2012)
  59. 59.
    Königsberger, E., Königsberger, L.-C., Hefter, G., May, P.M.: Zdanovskii’s rule and isopiestic measurements applied to synthetic Bayer liquors. J. Solution Chem. 36, 1619–1634 (2007)CrossRefGoogle Scholar
  60. 60.
    Harned, H., Harris, J.J.: The activity coefficients of sodium and potassium hydroxides in their corresponding chloride solutions at high constant total molality. J. Am. Chem. Soc. 50, 2633–2637 (1928)CrossRefGoogle Scholar
  61. 61.
    Harned, H., Cook, M.: The activity and osmotic coefficients of some hydroxide–chloride mixtures in aqueous solution. J. Am. Chem. Soc. 59, 1890–1893 (1937)CrossRefGoogle Scholar
  62. 62.
    Zdanovskii, A.B., Solov’eva, E.F., Lyakhovskaya, E.I., Shestakov, N.E., Shleimovich, R.E., Abutkova, L.M.: Experimental Solubility Data on Salt–Water Systems. Vol. 2, Four Component and More Complex Systems, 2nd edn., corrected and completed, 1064 pp. “Chemistry” Publishing, Leningrad. (in Russian) (1975)Google Scholar
  63. 63.
    Pokrovskii, V.A., Helgeson, H.C.: Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: the system Al2O3–H2O–NaCl. Am. J. Sci. 295, 1255–1342 (1995)CrossRefGoogle Scholar
  64. 64.
    Cherif, M., Mgaidi, A., Ammar, M.N., Vallée, G., Fürst, W.: A new investigation of aqueous orthophosphoric acid speciation using Raman spectroscopy. J. Solution Chem. 29, 255–269 (2000)CrossRefGoogle Scholar
  65. 65.
    Pitzer, K.S., Roy, R.N., Silvester, L.F.: Thermodynamics of electrolytes. 7. Sulfuric acid. J. Am. Chem. Soc. 99, 4930–4936 (1977)CrossRefGoogle Scholar
  66. 66.
    Felmy, A.R., Cho, H., Rustad, J.R., Mason, M.J.: An aqueous thermodynamic model for polymerized silica species to high ionic strength. J. Solution Chem. 30, 509–525 (2001)CrossRefGoogle Scholar
  67. 67.
    Møller, N., Christov, C., Weare, J.H.: Thermodynamic model for predicting interactions of geothermal brines with hydrothermal aluminium silicate minerals. 32nd Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, USA, January 22–24, 2007 (2007).Google Scholar
  68. 68.
    Christov, C.: Temperature variable chemical model of bromide–sulfate solution interaction parameters and solid–liquid equilibria in the Na–K–Ca–Br–SO4–H2O system. Calphad. 36, 71–81 (2012)CrossRefGoogle Scholar
  69. 69.
    Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions. CRC Press, Boca Raton (1991)Google Scholar
  70. 70.
    Zemaitis, J.F.: Handbook of Aqueous Electrolyte Thermodynamics. Wiley, New York (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Adeline Lach
    • 1
    • 2
  • Laurent André
    • 1
  • Arnault Lassin
    • 1
  • Mohamed Azaroual
    • 1
  • Jean-Paul Serin
    • 2
  • Pierre Cézac
    • 2
  1. 1.BRGM – Water, Environment and Ecotechnologies DirectionOrléans CedexFrance
  2. 2.LaTEP – rue Jules FerryPauFrance

Personalised recommendations