Advertisement

Journal of Solution Chemistry

, Volume 44, Issue 6, pp 1224–1239 | Cite as

The Solvation of Anions in Propylene Carbonate

  • Niccolò Peruzzi
  • Pierandrea Lo Nostro
  • Barry W. Ninham
  • Piero Baglioni
Article

Abstract

The solubilities of some univalent potassium salts (KF, KCl, KBr, KI, KClO4, KSCN, and KCNO) in propylene carbonate (PC) were determined at different temperatures from (25.0 to 45.0) °C through flame emission spectroscopy. From the solubility measurements, the thermodynamic parameters ∆G 0, ∆H 0 and ∆S 0 of solution were calculated. Measurements were carried out via electrical conductimetry and FTIR to investigate the formation of ion pairs and the ion–solvent interactions. This study was motivated by the open question of whether specific ion (Hofmeister) effects are related to the structure of the solvent (i.e., hydrogen bonding). As for water, these effects are due to solute-induced solvent structure changes not accounted for by electrostatic forces.

Keywords

Hofmeister series Propylene carbonate Specific ion effects Ion solvation Solvent structure 

Notes

Acknowledgments

The authors are grateful to the Prof. Enzo Ferroni Foundation (Firenze, Italy) and to CSGI (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Firenze, Italy) for partial financial support.

References

  1. 1.
    Ninham, B.W., Lo Nostro, P.: Molecular forces and self assembly. In Colloid, Nano Sciences and Biology. Cambridge University Press, Cambridge (2010)Google Scholar
  2. 2.
    Lo Nostro, P., Ninham, B.W.: Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112, 2286–2322 (2012)CrossRefGoogle Scholar
  3. 3.
    Labban, A.K.S., Marcus, Y.: The solubility and solvation of salts in mixed non aqueous solvents. 2. Potassium halides in mixed protic solvents. J. Solution Chem. 26, 1–12 (1997)Google Scholar
  4. 4.
    Yang, Z.: Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J. Biotechnol. 144, 12–22 (2009)CrossRefGoogle Scholar
  5. 5.
    Ishimatsu, R., Nishi, N., Kakiuchi, T.: Interfacial ion pairing at the interface between water and a room-temperature ionic liquid, N-tetradecylisoquinolinium bis (pentafluoroethylsulfonyl) imide. Langmuir 23, 7608–7611 (2007)CrossRefGoogle Scholar
  6. 6.
    Liu, G., Hou, Y., Zhang, G., Craig, V.S.J.: Inhibition of bubble coalescence by electrolytes in binary mixtures of dimethyl sulfoxide and propylene carbonate. Langmuir 25, 10495–10500 (2009)CrossRefGoogle Scholar
  7. 7.
    Bilanicova, D., Salis, A., Ninham, B.W., Monduzzi, M.: Specific anion effects on enzymatic activity in nonaqueous media. J. Phys. Chem. B 112, 12066–12072 (2008)CrossRefGoogle Scholar
  8. 8.
    Peruzzi, N., Ninham, B.W., Lo Nostro, P., Baglioni, P.: Hofmeister phenomena in nonaqueous media: the solubility of electrolytes in ethylene carbonate. J. Phys. Chem. B 116, 14398–14405 (2012)CrossRefGoogle Scholar
  9. 9.
    Jones, J., Anouti, M., Caillon-Caravanier, M., Willmann, P., Lemordant, D.: Thermodynamic of LiF dissolution in alkylcarbonates and some of their mixtures with water. Fluid Phase Equilib. 285, 62–68 (2009)CrossRefGoogle Scholar
  10. 10.
    Jorné, J., Tobias, C.W.: Electrodeposition of the alkali metals from propylene carbonate. J. Appl. Chem. 5, 279–290 (1975)Google Scholar
  11. 11.
    Grassi, S., Carretti, E., Pecorelli, P., Iacopini, F., Baglioni, P., Dei, L.: The conservation of the Vecchietta’s wall paintings in the old sacristy of Santa Maria della Scala in Siena: the use of nanotechnological cleaning agents. J. Cult. Herit. 8, 119–125 (2007)CrossRefGoogle Scholar
  12. 12.
    Palazzo, G., Fiorentino, D., Colafemmina, G., Ceglie, A., Carretti, E., Dei, L., Baglioni, P.: Nanostructured fluids based on propylene carbonate/water mixture. Langmuir 21, 6717–6725 (2005)CrossRefGoogle Scholar
  13. 13.
    Chernyak, Y.: Dielectric constant, dipole moment, and solubility parameters of some cyclic acid esters. J. Chem. Eng. Data 51, 416–418 (2006)CrossRefGoogle Scholar
  14. 14.
    Wakihara, M., Yamamoto, O.: Lithium ion batteries fundamental and performance. Kadansha Ltd., Tokyo (1998)CrossRefGoogle Scholar
  15. 15.
    Aurbach, D., Gofer, Y., Ben-Zion, M., Aped, C.: The behaviour of lithium electrodes in propylene and ethylene carbonate: the major factors that influence Li cycling efficiency. J. Electroanal. Chem. 339, 451–471 (1992)CrossRefGoogle Scholar
  16. 16.
    Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004)CrossRefGoogle Scholar
  17. 17.
    Perrin, D.D., Armarego, W.L.F.: Purification of laboratory chemicals. Pergamon Press, Oxford (1992)Google Scholar
  18. 18.
    Parsons, R.: Handbook of electrochemical constants. Butterworths Scientific Publications, London (1959)Google Scholar
  19. 19.
    Silva, L.B., Freitas, L.C.G.: Structural and thermodynamic properties of liquid ethylene carbonate and propylene carbonate by Monte Carlo simulations. J. Mol. Struct. 806, 23–34 (2007)CrossRefGoogle Scholar
  20. 20.
    Simeral, L., Amey, R.L.: Dielectric properties of liquid propylene carbonate. J. Phys. Chem. 74, 1443–1446 (1970)CrossRefGoogle Scholar
  21. 21.
    Marcus, Y.: The structuredness of solvents. J. Solution Chem. 21, 1217–1230 (1992)CrossRefGoogle Scholar
  22. 22.
    Marcus, Y.: The effectivity of solvents as electron pair donors. J. Solution Chem. 13, 599–624 (1984)CrossRefGoogle Scholar
  23. 23.
    Muhuri, K.P., Ghosh, S.K., Hazra, K.D.: Solubilities of some alkali-metal salts, tetraphenylarsoniumchloride, and tetraphenylphosphoniumbromide in propylene carbonate at 25 °C using the ion-selective electrode technique. J. Chem. Eng. Data 38, 242–244 (1993)CrossRefGoogle Scholar
  24. 24.
    Wu, Y.-C., Friedman, H.L.: Heats of solution of some trifluoroacetates, tetraphenylborates, iodides, and perchlorates in water and in propylene carbonate and the relative enthalpies of solvation of the alkali metal ions in propylene carbonate. J. Phys. Chem. 70, 501–509 (1966)CrossRefGoogle Scholar
  25. 25.
    Strong, J., Tuttle, T.R.: Solubilities of alkali metal chlorides in some amine and ether solvents. J. Phys. Chem. 77, 533–539 (1972)CrossRefGoogle Scholar
  26. 26.
    Criss, C.M., Luksha, E.: Thermodynamic properties of nonaqueoussolutions. IV. Free energies and entropies of solvation of some alkali metal halides in N, N-dimethylformamide. J. Phys. Chem. 72, 2966–2970 (1968)CrossRefGoogle Scholar
  27. 27.
    Hernández-Luis, F., Vazquez, M.V., Esteso, M.A.: Activity coefficients of NaF in aqueous mixtures with ε-increasing co-solvent: ethylene carbonate–water mixtures at 298.15 K. Fluid Phase Equilibr. 218, 295–304 (2004)CrossRefGoogle Scholar
  28. 28.
    Lide, D.R. (ed.) CRC Handbook of Chemistry and Physics. CRC, Taylor and Francis, Boca Raton (1981–1982)Google Scholar
  29. 29.
    Barthel, J., Neueder, R., Roch, H.: Density, relative permittivity, and viscosity of propylene carbonate + dimethoxyethanemixtures from 25 °C to 125 °C. J. Chem. Eng. Data 45, 1007–1011 (2000)CrossRefGoogle Scholar
  30. 30.
    Payne, R., Theodorou, I.E.: Dielectric properties and relaxation in ethylene carbonate and propylene carbonate. J. Phys. Chem. 76, 2892–2900 (1972)CrossRefGoogle Scholar
  31. 31.
    Duignan, T.T., Parsons, D.F., Ninham, B.W.: A continuum solvent model of the multipolar dispersion solvation energy. J. Phys. Chem. B 117, 9412–9420 (2013)CrossRefGoogle Scholar
  32. 32.
    Parsons, D.F., Deniz, V., Ninham, B.W.: Nonelectrostaticinteractions between ions with anisotropic ab initio dynamic polarisabilities. Colloids Surf. A 343, 57–63 (2009)CrossRefGoogle Scholar
  33. 33.
    Naejus, R., Damas, C., Lemordant, D., Coudert, R., Willmann, P.: Excess thermodynamic properties of the ethylene carbonate–trifluoroethylmethyl carbonate and propylene carbonate–trifluoroethylmethyl carbonate systems at T = (298.15 or 315.15) K. J. Chem. Thermodyn. 34, 795–806 (2002)CrossRefGoogle Scholar
  34. 34.
    Irudayam, S.J., Richard, H.H.: Prediction and interpretation of the hydration entropies of monovalent cations and anions. Molecular Phys. 109, 37–48 (2011)CrossRefGoogle Scholar
  35. 35.
    Soetesen, J.-C., Millot, C., Maigret, B.: Molecular dynamics simulation of Li+BF4 in ethylene carbonate, propylene carbonate, and dimethyl carbonate solvents. J. Phys. Chem. A 102, 1055–1061 (1998)CrossRefGoogle Scholar
  36. 36.
    Mukherjee, L.M., Boden, D.P.: Equilibria in propylene carbonate. I. Viscosity and conductance studies of some lithium and quaternary ammonium salts. J. Phys. Chem. 73, 3965–3968 (1969)CrossRefGoogle Scholar
  37. 37.
    Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Butterworths, London (1959)Google Scholar
  38. 38.
    Hammadi, A., Champeney, D.C.: Conductance of solutions of alkali-metal halides in glycerol. J. Chem. Eng. Data 45, 1116–1120 (2000)CrossRefGoogle Scholar
  39. 39.
    Jansen, M.L., Yeager, H.L.: Conductance study of 1-1 electrolytes in propylene carbonate. J. Phys. Chem. 77, 3089–3092 (1973)CrossRefGoogle Scholar
  40. 40.
    Mukherjee, L.M., Boden, D.P., Lindauer, R.: Behavior of electrolytes in propylene carbonate. II. Further studies of conductance and viscosity properties. Evaluation of ion conductances. J. Phys. Chem. 74, 1942–1946 (1970)CrossRefGoogle Scholar
  41. 41.
    Battisti, D., Nazri, A., Klassen, B., Aroca, R.: Vibrational studies of lithium perchlorate in propylene carbonate solutions. J. Phys. Chem. 97, 5826–5830 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Niccolò Peruzzi
    • 1
  • Pierandrea Lo Nostro
    • 1
  • Barry W. Ninham
    • 2
  • Piero Baglioni
    • 1
  1. 1.Department of Chemistry “Ugo Schiff” and CSGIUniversity of FlorenceFlorenceItaly
  2. 2.Research School of Physical Sciences and EngineeringCanberraAustralia

Personalised recommendations