Journal of Solution Chemistry

, Volume 44, Issue 3–4, pp 703–717 | Cite as

Thermophysical Properties of Two Ammonium-Based Protic Ionic Liquids

  • Arijit Bhattacharjee
  • João A. P. Coutinho
  • Mara G. Freire
  • Pedro J. Carvalho


Experimental data for density, viscosity, refractive index and surface tension are reported, for the first time, in the temperature range between 288.15 and 353.15 K and at atmospheric pressure for two protic ionic liquids, namely 2-(dimethylamino)-N,N-dimethylethan-1-ammonium acetate, [N11{2(N11)}H][CH3CO2], and N-ethyl-N,N-dimethylammonium phenylacetate, [N112H][C7H7CO2]. The effect of the anion’s aromaticity and the cation’s aliphatic tails on the studied properties is discussed. Additional derived properties, such as isobaric thermal expansion coefficient, surface entropy and enthalpy and critical temperature, were estimated.


Protic ionic liquids Density Viscosity Refractive index Surface tension 



This work was developed in the scope of the project CICECO-Aveiro Institute of Materials (Ref. FCT UID /CTM /50011/2013), financed by national funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement. P.J.C. and A.B. also acknowledge FCT for their post-doctoral grants SFRH/BPD/82264/2011 and SFRH/BPD/77858/2011, respectively. M. G. Freire acknowledges the European Research Council (ERC) for the Starting Grant ERC-2013-StG-337753.


  1. 1.
    Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis. Wiley-VCH, Weinheim (2008)Google Scholar
  2. 2.
    Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)CrossRefGoogle Scholar
  3. 3.
    Wasserscheid, P., Keim, W.: Ionic liquids-new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. Engl. 39, 3772–3789 (2000)CrossRefGoogle Scholar
  4. 4.
    Hagiwara, R., Lee, J.: Ionic liquids for electrochemical devices. Electrochemistry 75, 23–34 (2007)CrossRefGoogle Scholar
  5. 5.
    Xiang, H.F., Yin, B., Wang, H., Lin, H.W., Ge, X.W., Xie, S., Chen, C.H.: Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries. Electrochim. Acta 55, 5204–5209 (2010)CrossRefGoogle Scholar
  6. 6.
    Chowdhury, S., Mohan, R.S., Scott, J.L.: Reactivity of ionic liquids. Tetrahedron 63, 2363–2389 (2007)CrossRefGoogle Scholar
  7. 7.
    Sheldon, R.A., Lau, R.M., Sorgedrager, M.J., van Rantwijk, F., Seddon, K.R.: Biocatalysis in ionic liquids. Green Chem. 4, 147–151 (2002)CrossRefGoogle Scholar
  8. 8.
    Van Rantwijk, F., Sheldon, R.A.: Biocatalysis in ionic liquids. Chem. Rev. 107, 2757–2785 (2007)CrossRefGoogle Scholar
  9. 9.
    De Souza, R.F., Padilha, J.C., Gonçalves, R.S., Dupont, J.: Room temperature dialkylimidazolium ionic liquid-based fuel cells. Electrochem. Commun. 5, 728–731 (2003)CrossRefGoogle Scholar
  10. 10.
    Wang, Y., Zaghib, K., Guerfi, A., Bazito, F.F.C., Torresi, R.M., Dahn, J.R.: Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochim. Acta 52, 6346–6352 (2007)CrossRefGoogle Scholar
  11. 11.
    Shvedene, N.V., Chernyshov, D.V., Pletnev, I.V.: Ionic liquids in electrochemical sensors. Russ. J. Gen. Chem. 78, 2507–2520 (2009)CrossRefGoogle Scholar
  12. 12.
    Wang, P., Zakeeruddin, S.M., Moser, J.E., Grätzel, M.: A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. J. Phys. Chem. B. 107, 13280–13285 (2003)CrossRefGoogle Scholar
  13. 13.
    Kennedy, D.F., Drummond, C.J.: Large aggregated ions found in some protic ionic liquids. J. Phys. Chem. B. 113, 5690–5693 (2009)CrossRefGoogle Scholar
  14. 14.
    Greaves, T.L., Drummond, C.J.: Protic ionic liquids: properties and applications. Chem. Rev. 108, 206–237 (2008)CrossRefGoogle Scholar
  15. 15.
    Bicak, N.: A new ionic liquid: 2-hydroxy ethylammonium formate. J. Mol. Liq. 116, 15–18 (2005)CrossRefGoogle Scholar
  16. 16.
    Iglesias, M., Torres, A., Gonzalez-Olmos, R., Salvatierra, D.: Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}. J. Chem. Thermodyn. 40, 119–133 (2008)CrossRefGoogle Scholar
  17. 17.
    Álvarez, V.H., Dosil, N., Gonzalez-Cabaleiro, R., Mattedi, S., Martin-Pastor, M., Iglesias, M., Navaza, J.M.: Brønsted ionic liquids for sustainable processes: synthesis and physical properties. J. Chem. Eng. Data 55, 625–632 (2010)CrossRefGoogle Scholar
  18. 18.
    Cota, I., Gonzalez-Olmos, R., Iglesias, M., Medina, F.: New short aliphatic chain ionic liquids: synthesis, physical properties, and catalytic activity in aldol condensations. J. Phys. Chem. B. 111, 12468–12477 (2007)CrossRefGoogle Scholar
  19. 19.
    Peric, B., Sierra, J., Martí, E., Cruañas, R., Garau, M.A., Arning, J., Bottin-Weber, U., Stolte, S.: (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. J. Hazard. Mater. 261, 99–105 (2013)CrossRefGoogle Scholar
  20. 20.
    Pernak, J., Goc, I., Mirska, I.: Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem. 6, 323–329 (2004)CrossRefGoogle Scholar
  21. 21.
    Hangarge, R.V., Jarikote, D.V., Shingare, M.S.: Knoevenagel condensation reactions in an ionic liquid. Green Chem. 4, 266–268 (2002)CrossRefGoogle Scholar
  22. 22.
    Laali, K.K., Gettwert, V.J.: Electrophilic nitration of aromatics in ionic liquid solvents. J. Org. Chem. 66, 35–40 (2001)CrossRefGoogle Scholar
  23. 23.
    Hu, Y., Chen, J., Le, Z., Zheng, Q.: Organic reactions in ionic liquids: ionic liquids ethylammonium nitrate promoted knoevenagel condensation of aromatic aldehydes with active methylene compounds. Synth. Commun. 35, 739–744 (2005)CrossRefGoogle Scholar
  24. 24.
    Poole, C.F.: Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. J. Chromatogr. A. 1037, 49–82 (2004)CrossRefGoogle Scholar
  25. 25.
    Susan, M.A.B.H., Noda, A., Mitsushima, S., Watanabe, M.: Brønsted acid-base ionic liquids and their use as new materials for anhydrous proton conductors. Chem. Commun. 8, 938–939 (2003)CrossRefGoogle Scholar
  26. 26.
    Earle, M., Plechkova, N., Seddon, K.: Green synthesis of biodiesel using ionic liquids. Pure Appl. Chem. 81, 2045–2057 (2009)CrossRefGoogle Scholar
  27. 27.
    Gálvez-Ruiz, J.C., Holl, G., Karaghiosoff, K., Klapötke, T.M., Löhnwitz, K., Mayer, P., Nöth, H., Polborn, K., Rohbogner, C.J., Suter, M., Weigand, J.J.: Derivatives of 1,5-diamino-1H-tetrazole: a new family of energetic heterocyclic-based salts. Inorg. Chem. 44, 4237–4253 (2005)CrossRefGoogle Scholar
  28. 28.
    Picquet, M., Tkatchenko, I., Tommasi, I., Wasserscheid, P., Zimmermann, J.: Ionic liquids, 3. Synthesis and utilisation of protic imidazolium salts in homogeneous catalysis. Adv. Synth. Catal. 345, 959–962 (2003)CrossRefGoogle Scholar
  29. 29.
    Talavera-Prieto, N.M.C., Ferreira, A.G.M., Simões, P.N., Carvalho, P.J., Mattedi, S., Coutinho, J.A.P.: Thermophysical characterization of N-methyl-2-hydroxyethylammonium carboxilate ionic liquids. J. Chem. Thermodyn. 68, 221–234 (2014)CrossRefGoogle Scholar
  30. 30.
    Greaves, T.L., Weerawardena, A., Fong, C., Drummond, C.J.: Many protic ionic liquids mediate hydrocarbon–solvent interactions and promote amphiphile self-assembly. Langmuir 23, 402–404 (2007)CrossRefGoogle Scholar
  31. 31.
    Belieres, J.-P., Angell, C.A.: Protic ionic liquids: preparation, characterization, and proton free energy level representation. J. Phys. Chem. B. 111, 4926–4937 (2007)CrossRefGoogle Scholar
  32. 32.
    Kurnia, K.A., Wilfred, C.D., Murugesan, T.: Thermophysical properties of hydroxyl ammonium ionic liquids. J. Chem. Thermodyn. 41, 517–521 (2009)CrossRefGoogle Scholar
  33. 33.
    Iglesias, M., Gonzalez-Olmos, R., Cota, I., Medina, F.: Brønsted ionic liquids: study of physico-chemical properties and catalytic activity in aldol condensations. Chem. Eng. J. 162, 802–808 (2010)CrossRefGoogle Scholar
  34. 34.
    Pinkert, A., Ang, K.L., Marsh, K.N., Pang, S.: Density, viscosity and electrical conductivity of protic alkanolammonium ionic liquids. Phys. Chem. Chem. Phys. 13, 5136–5143 (2011)CrossRefGoogle Scholar
  35. 35.
    Chhotaray, P.K., Gardas, R.L.: Thermophysical properties of ammonium and hydroxylammonium protic ionic liquids. J. Chem. Thermodyn. 72, 117–124 (2014)CrossRefGoogle Scholar
  36. 36.
    Almeida, H.F.D., Passos, H., Lopes-da-Silva, J.A., Fernandes, A.M., Freire, M.G., Coutinho, J.A.P.: Thermophysical properties of five acetate-based ionic liquids. J. Chem. Eng. Data. 57, 3005–3013 (2012)CrossRefGoogle Scholar
  37. 37.
    Capelo, S.B., Méndez-Morales, T., Carrete, J., López Lago, E., Vila, J., Cabeza, O., Rodríguez, J.R., Turmine, M., Varela, L.M.: Effect of temperature and cationic chain length on the physical properties of ammonium nitrate-based protic ionic liquids. J. Phys. Chem. B. 116, 11302–11312 (2012)CrossRefGoogle Scholar
  38. 38.
    Chang-Ping, L., Zhuo, L., Ben-Xue, Z., Qing-Shan, L., Xiao-Xia, L.: Density, viscosity and conductivity of protic ionic liquid N,N-dimethylethanolammoniumpropionate. Acta Phys. Chim. Sin. 29, 2157–2161 (2013)Google Scholar
  39. 39.
    Arfan, A., Bazureau, J.P.: Efficient combination of recyclable task specific ionic liquid and microwave dielectric heating for the synthesis of lipophilic esters. Org. Process Res. Dev. 9, 743–748 (2005)CrossRefGoogle Scholar
  40. 40.
    Govinda, V., Madhusudhana Reddy, P., Bahadur, I., Attri, P., Venkatesu, P., Venkateswarlu, P.: Effect of anion variation on the thermophysical properties of triethylammonium based protic ionic liquids with polar solvent. Thermochim. Acta 556, 75–88 (2013)CrossRefGoogle Scholar
  41. 41.
    Kavitha, T., Attri, P., Venkatesu, P., Devi, R.S.R., Hofman, T.: Influence of alkyl chain length and temperature on thermophysical properties of ammonium-based ionic liquids with molecular solvent. J. Phys. Chem. B. 116, 4561–4574 (2012)CrossRefGoogle Scholar
  42. 42.
    Carvalho, P.J., Regueira, T., Santos, L.M.N.B.F., Fernandez, J., Coutinho, J.A.P.: Effect of water on the viscosities and densities of 1-butyl-3-methylimidazolium dicyanamide and 1-butyl-3-methylimidazolium tricyanomethane at atmospheric pressure. J. Chem. Eng. Data 55, 645–652 (2010)CrossRefGoogle Scholar
  43. 43.
    Neves, C.M.S.S., Batista, M.L.S., Cláudio, A.F.M., Santos, L.M.N.B.F., Marrucho, I.M., Freire, M.G., Coutinho, J.A.P.: Thermophysical properties and water saturation of [PF6]-based Ionic Liquids. J. Chem. Eng. Data 55, 5065–5073 (2010)CrossRefGoogle Scholar
  44. 44.
    Neves, C.M.S.S., Kurnia, K.A., Coutinho, J.A.P., Marrucho, I.M., Lopes, J.N.C., Freire, M.G., Rebelo, L.P.N.: Systematic study of the thermophysical properties of imidazolium-based ionic liquids with cyano-functionalized anions. J. Phys. Chem. B. 117, 10271–10283 (2013)CrossRefGoogle Scholar
  45. 45.
    Bhattacharjee, A., Carvalho, P.J., Coutinho, J.A.P.: The effect of the cation aromaticity upon the thermophysical properties of piperidinium- and pyridinium-based ionic liquids. Fluid Phase Equilib. 375, 80–88 (2014)CrossRefGoogle Scholar
  46. 46.
    Bhattacharjee, A., Luís, A., Santos, J.H., Lopes-da-Silva, J.A., Freire, M.G., Carvalho, P.J., Coutinho, J.A.P.: Thermophysical properties of sulfonium- and ammonium-based ionic liquids. Fluid Phase Equilib. 381, 36–45 (2014)CrossRefGoogle Scholar
  47. 47.
    Almeida, H.F.D., Teles, A.R.R., Lopes-da-Silva, J.A., Freire, M.G., Coutinho, J.A.P.: Influence of the anion on the surface tension of 1-ethyl-3-methylimidazolium-based ionic liquids. J. Chem. Thermodyn. 54, 49–54 (2012)CrossRefGoogle Scholar
  48. 48.
    Gardas, R.L., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca, I.M.A., Ferreira, A.G.M., Coutinho, J.A.P.: PρT measurements of imidazolium-based ionic liquids. J. Chem. Eng. Data 52, 1881–1888 (2007)CrossRefGoogle Scholar
  49. 49.
    Blesic, M., Swadzba-Kwasny, M., Belhocine, T., Gunaratne, H.Q.N., Lopes, J.N.C., Gomes, M.F.C., Padua, A.A.H., Seddon, K.R., Rebelo, L.P.N.: 1-Alkyl-3-methylimidazolium alkanesulfonate ionic liquids, [CnH2n+1mim] [CkH2k+1SO3]: synthesis and physicochemical properties. Phys. Chem. Chem. Phys. 11, 8939–8948 (2009)CrossRefGoogle Scholar
  50. 50.
    Machanová, K., Boisset, A., Sedláková, Z., Anouti, M., Bendová, M., Jacquemin, J.: Thermophysical properties of ammonium-based bis{(trifluoromethyl)sulfonyl}imide ionic liquids: volumetric and transport properties. J. Chem. Eng. Data 57, 2227–2235 (2012)CrossRefGoogle Scholar
  51. 51.
    Kilaru, P., Baker, G.A., Scovazzo, P.: Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids: data and correlations. J. Chem. Eng. Data 52, 2306–2314 (2007)CrossRefGoogle Scholar
  52. 52.
    Turbomole, version 6.1; University of Karlsruhe and Forschungszentrum Karlsruhe GmbH: Karlsruhe, Germany. (2009). (Accessed 23 March 2015)
  53. 53.
    Eckert, A.K.F.: COSMOtherm Version C2.1 Release 01.08, COSMOlogic GmbH & Co. KG, Leverkusen, Germany (2006)Google Scholar
  54. 54.
    Gardas, R.L., Coutinho, J.A.P.: Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AIChE J. 55, 1274–1290 (2009)CrossRefGoogle Scholar
  55. 55.
    Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, San Diego (2011)Google Scholar
  56. 56.
    Goodwin, A.R.H., Marsh, K.N., Wakeham, W.A.: Measurement of the Thermodynamic Properties of Single Phases, IUPAC Experimental Thermodynamics, vol. VI. Elsevier, Amsterdam (2003)Google Scholar
  57. 57.
    Brocos, P., Pineiro, A., Bravo, R., Amigo, A.: Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations. Phys. Chem. Chem. Phys. 5, 550–557 (2003)CrossRefGoogle Scholar
  58. 58.
    Seki, S., Tsuzuki, S., Hayamizu, K., Umebayashi, Y., Serizawa, N., Takei, K., Miyashiro, H.: Comprehensive refractive index property for room-temperature ionic liquids. J. Chem. Eng. Data 57, 2211–2216 (2012)CrossRefGoogle Scholar
  59. 59.
    Carvalho, P.J., Ventura, S.P.M., Batista, M.L.S., Schröder, B., Gonçalves, F., Esperança, J., Mutelet, F., Coutinho, J.A.P.: Understanding the impact of the central atom on the ionic liquid behavior: phosphonium vs ammonium cations. J. Chem. Phys. 140, 064505 (2014)CrossRefGoogle Scholar
  60. 60.
    Carvalho, P.J., Freire, M.G., Marrucho, I.M., Queimada, A.J., Coutinho, J.A.P.: Surface tensions for the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J. Chem. Eng. Data 53, 1346–1350 (2008)CrossRefGoogle Scholar
  61. 61.
    Freire, M.G., Carvalho, P.J., Fernandes, A.M., Marrucho, I.M., Queimada, A.J., Coutinho, J.A.P.: Surface tensions of imidazolium based ionic liquids: anion, cation, temperature and water effect. J. Colloid Interface Sci. 314, 621–630 (2007)CrossRefGoogle Scholar
  62. 62.
    Adamson, A.W., Gast, A.P.: Physical Chemistry of Surfaces. John Wiley, New York (1997)Google Scholar
  63. 63.
    McNaught, A.D., Wikinson, A.: Compendium of Chemical Therminology, IUPAC Recommendations. Blackwell Science, Cambridge (1997)Google Scholar
  64. 64.
    Miller, J.C., Miller, J.N.: Statistics for Analytical Chemistry. PTR Prentice Hall, Chichester (1993)Google Scholar
  65. 65.
    MacFarlane, D.R., Pringle, J.M., Johansson, K.M., Forsyth, S.A., Forsyth, M.: Lewis base ionic liquids. Chem. Commun. 18 1905–1917 (2006)CrossRefGoogle Scholar
  66. 66.
    Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids. McGraw-Hill, New York (2001)Google Scholar
  67. 67.
    Rebelo, L.P.N., Canongia Lopes, J.N., Esperança, J.M.S.S., Filipe, E.: On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. J. Phys. Chem. B. 109, 6040–6043 (2005)CrossRefGoogle Scholar
  68. 68.
    Shereshefsky, J.L.: Surface tension of saturated vapors and the equation of Eötvös. J. Phys. Chem. 35, 1712–1720 (1930)CrossRefGoogle Scholar
  69. 69.
    Guggenheim, E.A.: The principle of corresponding states. J. Chem. Phys. 13, 253–261 (1945)CrossRefGoogle Scholar
  70. 70.
    Birdi, K.S. (ed.): Handbook of Surface and Colloid Chemistry. CRC Press, Boca Raton (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Arijit Bhattacharjee
    • 1
  • João A. P. Coutinho
    • 1
  • Mara G. Freire
    • 1
  • Pedro J. Carvalho
    • 1
  1. 1.CICECO - Aveiro Institute of Materials, Department of ChemistryUniversity of AveiroAveiroPortugal

Personalised recommendations