Journal of Solution Chemistry

, Volume 44, Issue 3–4, pp 440–453 | Cite as

Capture of Opiates by Ionic Liquids

  • José Restolho
  • Mário Barroso
  • Mário Dias
  • Carlos A. M. Afonso
  • Benilde Saramago
Article

Abstract

Room temperature ionic liquids (RTILs) are known to provide efficient extraction media for a variety of systems. In particular, their ability to remove low volatility compounds (including opiate drugs) from the surface of human hair was recently demonstrated by this team. Among many tested ILs, some exhibited high extraction efficiencies for the two studied compounds, morphine and 6-monoacetylmorphine, while others have practically zero efficiency. The aim of the present study was to further understand the special affinity of specific combinations cation/anion towards the opiate drugs, through a systematic study of a limited number of ILs: 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc], 1-butyl-3-methylimidazolium acetate [C4mim][OAc], 1-hexyl-3-methylimidazolium acetate [C6mim][OAc], 1-ethanol-3-methylimidazolium tetrafluoroborate, [C2OHmim][BF4], 1-ethanol-3-methylimidazolium chloride [C2OHmim][Cl], and 1-butyl-3-methylimidazolium tetrafluoroborate, [C4mim][BF4]. Correlations between the efficiency of drug extraction from hair and the water content, surface tension and polarity of the ionic liquids (ILs) were found. The extraction efficiency increased with the IL’s water content, although in a different way for each IL/drug pair. A decrease in the surface tension during the process of drug extraction was detected only for highly efficient ILs. Efficiency was correlated with the polarity parameters defined by Kamlet and Taft: large for ILs of high acidity and low basicity (e.g. [C2OHmim][BF4]) and small for liquids with of low acidity and high basicity (e.g. [C6mim][OAc]).

Keywords

Ionic liquids Opiate drugs Extraction efficiency Kamlet–Taft parameters 

References

  1. 1.
    Marsh, K., Boxall, J., Lichtenthaler, R.: Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib. 219, 93–98 (2004)CrossRefGoogle Scholar
  2. 2.
    Pandey, S.: Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal. Chim. Acta 556, 38–45 (2006)CrossRefGoogle Scholar
  3. 3.
    Keskin, S., Kayrak-Talay, D., Akman, U., Hortaçsu, Ö.: A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids 43, 150–180 (2007)CrossRefGoogle Scholar
  4. 4.
    Maton, C., De Vos, N., Stevens, C.V.: Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem. Soc. Rev. 42, 5963–5977 (2013)CrossRefGoogle Scholar
  5. 5.
    Kulkarni, P.S., Branco, L.C., Crespo, J.G., Afonso, C.A.M.: A comparative study on absorption and selectivity of organic vapors by using ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. Chem. Eur. J. 13, 8470–8477 (2007)CrossRefGoogle Scholar
  6. 6.
    Kulkarni, P.S., Branco, L.C., Crespo, J.G., Afonso, C.A.M.: Capture of dioxins by ionic liquids. Environ. Sci. Technol. 42, 2570–2574 (2008)CrossRefGoogle Scholar
  7. 7.
    Kulkarni, P.S., Neves, L.A., Coelhoso, I.M., Afonso, C.A.M., Crespo, J.G.: Supported ionic liquid membranes for removal of dioxins from high-temperature vapor streams. Environ. Sci. Technol. 46, 462–468 (2012)CrossRefGoogle Scholar
  8. 8.
    Restolho, J., Barroso, M., Dias, M., Saramago, B., Afonso, C.A.M.: Development, optimization and validation of a novel extraction procedure for the removal of opiates from human hair’s surface. Drug Test. Anal. (2014). doi:10.1002/dta.1695
  9. 9.
    Cairns, T., Hill, V., Schaffer, M., Thistle, W.: Removing and identifying drug contamination in the analysis of human hair. Forensic Sci. Int. 145, 97–108 (2004)CrossRefGoogle Scholar
  10. 10.
    Anderson, J.L., Ding, J., Welton, T., Armstrong, D.W.: Characterizing ionic liquids on the basis of multiple solvation interactions. J. Am. Chem. Soc. 124, 14247–14254 (2002)CrossRefGoogle Scholar
  11. 11.
    Crowhurst, L., Mawdsley, P.R., Perez-Arlandis, J.M., Salter, P.A., Welton, T.: Solvent–solute interactions in ionic liquids. Phys. Chem. Chem. Phys. 5, 2790–2794 (2003)CrossRefGoogle Scholar
  12. 12.
    Doherty, T.V., Mora-Pale, M., Foley, S.E., Linhardt, R.J., Dordick, J.S.: Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem. 12, 1967–1975 (2010)CrossRefGoogle Scholar
  13. 13.
    Da Costa Lopes, A.M., João, K.G., Morais, A.R.C., Bogel-Łukasik, E., Bogel-Łukasik, R.: Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem. Process. 1, 3 (2013)CrossRefGoogle Scholar
  14. 14.
    Barroso, M., Dias, M., Vieira, D.N., López-Rivadulla, M., Queiroz, J.A.: Simultaneous quantitation of morphine, 6-acetylmorphine, codeine, 6-acetylcodeine and tramadol in hair using mixed-mode solid-phase extraction and gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 396, 3059–3069 (2010)CrossRefGoogle Scholar
  15. 15.
    Restolho, J., Serro, A.P., Mata, J.L., Saramago, B.: Viscosity and surface tension of 1-ethanol-3-methylimidazolium tetrafluoroborate and 1-methyl-3-octylimidazolium tetrafluoroborate over a wide temperature range. J. Chem. Eng. Data 54, 950–955 (2009)CrossRefGoogle Scholar
  16. 16.
    Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B. 108, 16593–16600 (2004)CrossRefGoogle Scholar
  17. 17.
    Guan, W., Ma, X.-X., Li, L., Tong, J., Fang, D.-W., Yang, J.-Z.: Ionic parachor and its application in acetic acid ionic liquid homologue 1-alkyl-3-methylimidazolium acetate {[C(n)mim][OAc](n = 2,3,4,5,6)}. J. Phys. Chem. B. 115, 12915–12920 (2011)CrossRefGoogle Scholar
  18. 18.
    Monteiro, V.F., Maciel, A.P., Longo, E.: Thermal analysis of Caucasian human hair. J. Therm. Anal. Calorim. 79, 289–293 (2005)CrossRefGoogle Scholar
  19. 19.
    Niazi, A.A., Rabideau, B.D., Ismail, A.E.: Effects of water concentration on the structural and diffusion properties of imidazolium-based ionic liquid–water mixtures. J. Phys. Chem. B. 117, 1378–1388 (2013)CrossRefGoogle Scholar
  20. 20.
    Pragst, F., Balikova, M.A.: State of the art in hair analysis for detection of drug and alcohol abuse. Clin. Chim. Acta 370, 17–49 (2006)CrossRefGoogle Scholar
  21. 21.
    Jessop, P.G., Jessop, D.A., Fu, D., Phan, L.: Solvatochromic parameters for solvents of interest in green chemistry. Green Chem. 14, 1245–1259 (2012)CrossRefGoogle Scholar
  22. 22.
    Welton, T.: Electrodeposition from ionic liquids. In: Endres, F., Abbott, A.P., MacFarlane, D.R. (eds.) Angewandte Chemie, vol. 47, International edn., p. 4468. John Wiley & Sons, New York (2008)Google Scholar
  23. 23.
    Ab Rani, M.A., Brant, A., Crowhurst, L., Dolan, A., Lui, M., Hassan, N.H., Hallett, J.P., Hunt, P.A., Niedermeyer, H., Perez-Arlandis, J.M., Schrems, M., Welton, T., Winding, R.: Understanding the polarity of ionic liquids. Phys. Chem. Chem. Phys. 13, 16831–16840 (2011)CrossRefGoogle Scholar
  24. 24.
    Zhang, S., Qi, X., Ma, X., Lu, L., Zhang, Q., Deng, Y.: Investigation of cation–anion interaction in 1-(2-hydroxyethyl)-3-methylimidazolium-based ion pairs by density functional theory calculations and experiments. J. Phys. Org. Chem. 25, 248–257 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • José Restolho
    • 1
    • 2
  • Mário Barroso
    • 3
  • Mário Dias
    • 3
  • Carlos A. M. Afonso
    • 1
  • Benilde Saramago
    • 2
  1. 1.Instituto de Investigação do Medicamento (iMed.ULisboa)Faculdade de Farmácia da Universidade de LisboaLisbonPortugal
  2. 2.Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  3. 3.Serviço de Química e Toxicologia ForensesInstituto Nacional de Medicina Legal e Ciências ForensesLisbonPortugal

Personalised recommendations