Journal of Solution Chemistry

, Volume 43, Issue 9–10, pp 1550–1560 | Cite as

The Effect of Pre-solvation in the Ground State on Photoinduced Electron Transfer in Ionic Liquids

Article

Abstract

Photoinduced intramolecular charge transfer (CT) dynamics of the asymmetric and symmetric molecules, 4-(9-anthryl)-N,N-dimethylaniline (ADMA) and 9,9′-bianthryl (BA), was investigated by means of time-resolved fluorescence (TRF) spectroscopy and compared with the solvation dynamics of coumarin 153 (C153) in several ionic liquids (ILs). The normalized dynamic Stokes shift (DSS) function for the CT state emission of ADMA in the sub-ns to ns time scale is almost the same as those of BA and C153 in most of the ILs studied, in spite of the much larger Stokes shift of ADMA compared to those of BA and C153. On the other hand, the contribution from ultrafast DSS within 30 ps, which was undetectable with the time resolution in the present study, was estimated to be smaller for BA than that for ADMA. Meanwhile, in phosphonium IL, the DSS in sub-ns to ns time range was solute dependent. This peculiarity in phosphonium IL is discussed from the viewpoint of the hierarchy of the solvation dynamics.

Keywords

Ionic liquids Solvation dynamics Photoinduced charge transfer Time-resolved fluorescence spectra 

References

  1. 1.
    Wasserscheid, P., Keim, W.: Ionic liquids: new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. Engl. 39, 3772–3789 (2000)CrossRefGoogle Scholar
  2. 2.
    Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999)CrossRefGoogle Scholar
  3. 3.
    Wasserscheid, P., Welton, T. (eds.): Ionic Liquids in Synthesis. Wiley, Weinheim (2003)Google Scholar
  4. 4.
    MacFarlane, D.R., Forsyth, M., Howlett, P.C., Pringle, J.M., Sun, J., Annat, G., Neil, W., Izgorodina, E.I.: Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc. Chem. Res. 40, 1165–1173 (2007)CrossRefGoogle Scholar
  5. 5.
    Samanta, A.: Dynamic Stokes shift and excitation wavelength dependent fluorescence of dipolar molecules in room temperature ionic liquids. J. Phys. Chem. B 110, 13704–13716 (2006)CrossRefGoogle Scholar
  6. 6.
    Kashyap, H.K., Biswas, R.: Solvation dynamics of dipolar probes in dipolar room temperature ionic liquids: separation of ion–dipole and dipole–dipole interaction contributions. J. Phys. Chem. B 114, 254–268 (2010)CrossRefGoogle Scholar
  7. 7.
    Daschakraborty, S., Pal, T., Biswas, R.: Stokes shift dynamics of ionic liquids: solute probe dependence, and effects of self-motion, dielectric relaxation frequency window, and collective intermolecular solvent modes. J. Chem. Phys. 139, 164503 (2013)CrossRefGoogle Scholar
  8. 8.
    Triolo, A., Russina, O., Fazio, B., Triolo, R., Di Cola, E.: Morphology of 1-alkyl-3-methylimidazolium hexafluorophosphate room temperature ionic liquids. Chem. Phys. Lett. 457, 362–365 (2008)CrossRefGoogle Scholar
  9. 9.
    Xiao, D., Rajian, J.R., Cady, A., Li, S., Bartsch, R.A., Quitevis, E.L.: Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids. J. Phys. Chem. B 111, 4669–4677 (2007)CrossRefGoogle Scholar
  10. 10.
    Canongia, L., Padua, A.: Nanostructural organization in ionic liquids. J. Phys. Chem. B 110, 3330–3335 (2006)CrossRefGoogle Scholar
  11. 11.
    Wang, Y., Jiang, W., Yan, T., Voth, G.: Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations. Acc. Chem. Res. 40, 1193–1199 (2007)CrossRefGoogle Scholar
  12. 12.
    Hu, Z., Margulis, C.J.: Room-temperature ionic liquids: slow dynamics, viscosity, and the red edge effect. Acc. Chem. Res. 40, 1097–1105 (2007)CrossRefGoogle Scholar
  13. 13.
    Jin, H., Li, X., Maroncelli, M.: Heterogeneous solute dynamics in room temperature ionic liquids. J. Phys. Chem. B 111, 13473–13478 (2007)CrossRefGoogle Scholar
  14. 14.
    Del Popolo, M.G., Voth, G.A.: On the structure and dynamics of ionic liquids. J. Phys. Chem. B 108, 1744–1752 (2004)CrossRefGoogle Scholar
  15. 15.
    Pal, T., Biswas, R.: Rank-dependent orientational relaxation in an ionic liquid: an all-atom simulation study. Theor. Chem. Acc. 132, 1348 (2013)CrossRefGoogle Scholar
  16. 16.
    Nagasawa, Y., Itoh, T., Yasuda, M., Ishibashi, Y., Ito, S., Miyasaka, H.: Ultrafast charge transfer process of 9,9′-bianthryl in imidazolium ionic liquids. J. Phys. Chem. B 112, 15758–15765 (2008)CrossRefGoogle Scholar
  17. 17.
    Nagasawa, Y., Oishi, A., Itoh, T., Yasuda, M., Muramatsu, M., Ishibashi, Y., Ito, S., Miyasaka, H.: Dynamic Stokes shift of 9,9′-bianthryl in ionic liquids: a temperature dependence study. J. Phys. Chem. C 113, 11868–11876 (2009)CrossRefGoogle Scholar
  18. 18.
    Ait-Lyazidi, S., Dkaki, M., Bitit, N., Meziane, D., Cazeau-Dubroca, C., Cazeau, P.: Multiple fluorescences anomaly of 9,9′-bianthryl in solutions. Spectrochim. Acta A 55, 89–94 (1998)CrossRefGoogle Scholar
  19. 19.
    Nishiyama, K., Honda, T., Reis, H., Muller, U., Mullen, K., Baumann, W., Okada, T.: Electronic structures of 9,10-anthrylene dimers and trimers in solution: formation of charge separation states depending on alkyl substituent groups. J. Phys. Chem. A 102, 2934–2943 (1998)CrossRefGoogle Scholar
  20. 20.
    Muller, S., Heigen, J.: Fluorescence analysis of two new TICT systems: 10-cyano-9,9′-bianthryl (CBA) and 10,10′-dicyano-9,9′-bianthtryl (DCBA). Chem. Phys. 157, 231–242 (1991)CrossRefGoogle Scholar
  21. 21.
    Okada, T., Kawai, M., Ikemachi, T., Mataga, N.: Picosecond laser spectroscopy of dual excited electronic states of 4-(9-anthryl)-N,N-dimethylaniline. J. Phys. Chem. 88, 1976–1981 (1984)CrossRefGoogle Scholar
  22. 22.
    Kanaparthi, R., Sarkar, M., Samanta, A.: Probing the aggregated state of 4-(9-anthryl)-N,N-dimethylaniline by UV–Vis absorption and fluorescence spectroscopy, microscopy, and crystallography. J. Phys. Chem. B 113, 15189–15195 (2009)CrossRefGoogle Scholar
  23. 23.
    Baumann, W., Nagy, Z.: Photoinduced charge transfer as revealed by ground and excited state dipole moments. Pure Appl. Chem. 65, 1729–1732 (1993)CrossRefGoogle Scholar
  24. 24.
    Molotsky, T., Huppert, D.: Solvation statics and dynamics of coumarin 153 in dioxane–water solvent mixtures. J. Phys. Chem. A 107, 8449–8457 (2003)CrossRefGoogle Scholar
  25. 25.
    Moylan, C.R.: Molecular hyperpolarizabilities of coumarin dyes. J. Phys. Chem. 98, 13513–13516 (1994)CrossRefGoogle Scholar
  26. 26.
    Tamai, N., Yamazaki, T., Yamazaki, I.: Two-dimensional excitation energy transfer between chromophoric carbazole and anthracene in Langmuir–Blodgett monolayer films. J. Phys. Chem. 91, 841–845 (1987)CrossRefGoogle Scholar
  27. 27.
    Kang, T.J., Jarzeba, W., Barbara, P.F., Fonseca, T.: A photodynamical model for the excited state electron transfer of bianthryl and related molecules. Chem. Phys. 149, 81–95 (1990)CrossRefGoogle Scholar
  28. 28.
    Bell, F., Waring, D.H.: 63. The symmetrical dianthryls. Part I. J. Chem. Soc. 149, 267–269 (1949)CrossRefGoogle Scholar
  29. 29.
    de Barry Barnett, E., Cook, J.W., Matthews, M.A.: The mechanism of substitution reactions in the aromatic nucleus. Part II. Recl. Trav. Chim. Pays-Bas 44, 217–223 (1925)CrossRefGoogle Scholar
  30. 30.
    Muramatsu, M., Nagasawa, Y., Miyasaka, H.: Ultrafast solvation dynamics in room temperature ionic liquids observed by three-pulse photon echo peak shift measurements. J. Phys. Chem. A 115, 3886–3894 (2011)CrossRefGoogle Scholar
  31. 31.
    Barbara, P.F., Jarzeba, W.: Ultrafast photochemical intramolecular charge and excited state solvation. Advances in Photochemistry, vol. 15. Wiley, Hoboken (1990)Google Scholar
  32. 32.
    Jin, H., Baker, G.A., Arzhantsev, S., Dong, J., Maroncelli, M.: Solvation and rotational dynamics of coumarin 153 in ionic liquids: comparisons to conventional solvents. J. Phys. Chem. B 111, 7291–7302 (2007)CrossRefGoogle Scholar
  33. 33.
    Okada, T., Fujita, T., Mataga, N.: Intramolecular charge-transfer interactions and dynamical behaviors of excited p-(9′-anthryl)-N,N-dimethylaniline. Z. Phys. Chem. 101, 57–66 (1976)CrossRefGoogle Scholar
  34. 34.
    Fee, R.S., Milsom, J.A., Maroncelli, M.: Inhomogeneous decay kinetics and apparent solvent relaxation at low temperatures. J. Phys. Chem. 95, 5170–5181 (1991)CrossRefGoogle Scholar
  35. 35.
    Nakashima, N., Murakawa, M., Mataga, N.: Picosecond flash spectroscopy of solvent-induced intramolecular electron transfer in the excited 9,9′-bianthryl. Bull. Chem. Soc. Jpn. 49, 854–858 (1976)CrossRefGoogle Scholar
  36. 36.
    Zhang, X.-X., Liang, M., Ernsting, N.P., Maroncelli, M.: Conductivity and solvation dynamics in ionic liquids. J. Phys. Chem. Lett. 4, 1205–1210 (2013)CrossRefGoogle Scholar
  37. 37.
    Li, X., Liang, M., Chakraborty, A., Kondo, M., Maroncelli, M.: Solvent-controlled intramolecular electron transfer in ionic liquids. J. Phys. Chem. B 115, 6592–6607 (2011)CrossRefGoogle Scholar
  38. 38.
    Kashyap, H., Biswas, R.: Solvation dynamics in imidazolium and phosphonium ionic liquids: effects of solute motion. Indian J. Chem. A 49A, 685–694 (2010)Google Scholar
  39. 39.
    Mukherjee, P., Crank, J.A., Sharma, P.S., Wijeratne, A.B., Adhikary, R., Bose, S., Armstrong, D.W., Petrich, J.W.: Dynamic solvation in phosphonium ionic liquids: comparison of bulk and micellar systems and considerations for the construction of the solvation correlation function, C(t). J. Phys. Chem. B 112, 3390–3396 (2008)CrossRefGoogle Scholar
  40. 40.
    Ito, N., Arzhantsev, S., Heitz, M., Maroncelli, M.: Solvation dynamics and rotation of coumarin 153 in alkylphosphonium ionic liquids. J. Phys. Chem. B 108, 5771–5777 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Masayasu Muramatsu
    • 1
  • Satoe Morishima
    • 1
  • Tetsuro Katayama
    • 1
    • 2
  • Syoji Ito
    • 1
  • Yutaka Nagasawa
    • 1
    • 2
  • Hiroshi Miyasaka
    • 1
  1. 1.Division of Frontier Materials Science, Graduate School of Engineering Science, Center for Quantum Science and Technology under Extreme ConditionsOsaka UniversityToyonakaJapan
  2. 2.PRESTO, Japan Science and Technology Agency (JST)KawaguchiJapan

Personalised recommendations