Journal of Solution Chemistry

, Volume 44, Issue 5, pp 934–962 | Cite as

Conductivity Measurements on H2O-Bearing CO2-Rich Fluids

  • Ryan M. Capobianco
  • Miroslaw S. Gruszkiewicz
  • Robert J. Bodnar
  • J. Donald Rimstidt
Article

Abstract

Recent studies report rapid corrosion of metals and carbonation of minerals in contact with carbon dioxide containing trace amounts of dissolved water. One explanation for this behavior is that addition of small amounts of H2O to CO2 leads to significant ionization within the fluid, thus promoting reactions at the fluid–solid interface analogous to corrosion associated with aqueous fluids. The extent of ionization in the bulk CO2 fluid was determined using a flow-through conductivity cell capable of detecting very low conductivities. Experiments were conducted from 298 to 473 K and 7.39 to 20 MPa with H2O concentrations up to ~1,600 ppmw (mole fraction of water, \( x_{{{\text{H}}_2}\text{O}} \) ≈3.9 × 10−3), corresponding to the H2O solubility limit in liquid CO2 at ambient temperature. All solutions showed conductivities <10 nS·cm−1, indicating that the bulk solutions were essentially ion-free. This observation suggests that the observed corrosion and carbonation reactions are not the result of ionization in CO2-rich bulk phase, but does not preclude ionization in the fluid at the fluid–solid interface.

Keywords

Carbon dioxide CO2 + H2Carbonic acid Electrolytic conductivity Ionization CCS EGS 

References

  1. 1.
    Intergovernmental Panel on Climate Change: Climate Change 2007: Synthesis Report. In: Intergovernmental Panel on Climate Change (2007)Google Scholar
  2. 2.
    Benson, S.M., Cole, D.R.: CO2 sequestration in deep sedimentary formations. Elements 4(5), 325–331 (2008)CrossRefGoogle Scholar
  3. 3.
    Brown, D.W.: A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In: Proceedings, Twenty-Fifth Workshop on Geothermal Reservoir Engineering, pp. 233–238. Stanford University, Stanford, California, 24–26 January 2000, SGP-TR-165 (2000)Google Scholar
  4. 4.
    Pruess, K.: Enhanced geothermal systems (EGS) using CO2 as working fluid: a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35, 351–367 (2006). doi:10.1016/j.geothermics.2006.08.002 CrossRefGoogle Scholar
  5. 5.
    Gaus, I.: Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int. J. Greenh. Gas Control 4, 73–89 (2010). doi:10.1016/j.ijggc.2009.09.015 CrossRefGoogle Scholar
  6. 6.
    Lin, H., Fujii, T., Takisawa, R., Takahashi, T., Hashida, T.: Experimental evaluation of interactions in supercritical CO2/water/rock minerals system under geologic CO2 sequestration conditions. J. Mater. Sci. 43, 2307–2315 (2008). doi:10.1007/s10853-007-2029-4 CrossRefGoogle Scholar
  7. 7.
    Regnault, O., Lagneau, V., Schneider, H.: Experimental measurement of portlandite carbonation kinetics with supercritical CO2. Chem. Geol. 265, 113–121 (2009). doi:10.1016/j.chemgeo.2009.03.019 CrossRefGoogle Scholar
  8. 8.
    Schaef, H.T., Windisch Jr, C.F., McGrail, B.P., Martin, P.F., Rosso, K.M.: Brucite [Mg(OH2)] carbonation in wet supercritical CO2: an in situ high pressure X-ray diffraction study. Geochim. Cosmochim. Acta 75, 7458–7471 (2011). doi:10.1016/j.gca.2011.09.029 CrossRefGoogle Scholar
  9. 9.
    Regnault, O., Lagneau, V., Catalette, H., Schneider, H.: Experimental study of pure mineral phases/supercritical CO2 reactivity. Implications for geological CO2 sequestration. C. R. Seances Acad. Sci. Geosci. 337, 1331–1339 (2005). doi:10.1016/j.crte.2005.07.012 CrossRefGoogle Scholar
  10. 10.
    Glezakou, V.A., Dang, L.X.: Spontaneous activation of CO2 and possible corrosion pathways on the low-index iron surface Fe(100). J. Phys. Chem. C 113, 3691–3696 (2009). doi:10.1021/jp808296c CrossRefGoogle Scholar
  11. 11.
    Gruszkiewicz, M.S., Wood, R.H.: Conductance of dilute LiCl, NaCl, NaBr, and CsBr solutions in supercritical water using a flow conductance cell. J. Phys. Chem. B 101, 6549–6559 (1997). doi:10.1021/jp970197q CrossRefGoogle Scholar
  12. 12.
    Zimmerman, G.H.: A Flow-through electrical conductance instrument for dilute aqueous solutions: measurements of 1:1 electrolytes to 656 K and 28 MPa. PhD dissertation, University of Delaware (1994)Google Scholar
  13. 13.
    Zimmerman, G.H., Gruszkiewicz, M.S., Wood, R.H.: New apparatus for conductance measurements at high-temperatures: conductance of aqueous-solutions of LiCl, NaCl, NaBr, and CsBr at 28 MPa and water densities from 700 to 264 kg/m−3. J. Phys. Chem. 99, 11612–11625 (1995). doi:10.1021/j100029a045 CrossRefGoogle Scholar
  14. 14.
    Spycher, N., Pruess, K.: A Phase-partitioning model for CO2-brine mixtures at elevated temperatures and pressures: application to CO2-enhanced geothermal systems. Transp. Porous Media 82, 173–196 (2010). doi:10.1007/s11242-009-9425-y CrossRefGoogle Scholar
  15. 15.
    Duan, Z.H., Sun, R.: An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol. 193, 257–271 (2003)CrossRefGoogle Scholar
  16. 16.
    Tödheide, K., Frank, E.U.: Das Zweiphasengebiet und die kritische Kurve im System Kohlenoxid-Wasser bis zu Drucken von 3500 bar. Z. Phys. Chem. N. F. 37, 387–401 (1963)CrossRefGoogle Scholar
  17. 17.
    Takenouchi, S., Kennedy, G.C.: The binary system H2O–CO2 at high temperatures and pressures. Am. J. Sci. 262, 1055–1074 (1964)CrossRefGoogle Scholar
  18. 18.
    Steele-MacInnis, M., Capobianco, R.M., Dilmore, R., Goodman, A., Guthrie, G., Rimstidt, J.D., Bodnar, R.J.: Volumetrics of CO2 storage in deep saline formations. Environ. Sci. Technol. 47, 79–86 (2013). doi:10.1021/es301598t CrossRefGoogle Scholar
  19. 19.
    Bodnar, R.J., Steele-MacInnis, M., Capobianco, R.M., Rimstidt, J.D.: PVTX properties of H2O–CO2–”salt” at PTX conditions applicable to carbon sequestration in saline formations. In: DePaolo, D.J., Cole, D.R., Navrotsky, A., Bourg, I.C. (eds.) Geochemistry of Geologic CO2 Sequestration. Reviews in Mineralogy and Geochemistry, vol. 77, pp. 123–148. The Mineralogical Society of America, Chantilly (2013)Google Scholar
  20. 20.
    McGrail, B.P., Schaef, H.T., Glezakou, V.A., Dang, L.X., Owen, A.T.: Water reactivity in the liquid and supercritical CO2 phase: has half the story been neglected? Energy Procedia 1, 3415–3419 (2009)CrossRefGoogle Scholar
  21. 21.
    Read, A.J.: The first ionization constant of carbonic acid from 25 to 250°C and to 2000 bar. J. Solution Chem. 4, 53–70 (1975). doi:10.1007/bf00646052 CrossRefGoogle Scholar
  22. 22.
    Manning, C.E., Shock, E.L., Sverjensky, D.A.: The chemistry of carbon in aqueous fluids at crustal and upper-mantle conditions: experimental and theoretical constraints. In: Hazen, R.M., Jones, A.P., Baross, J.A. (eds.) Carbon in Earth. Reviews in Mineralogy and Geochemistry, vol. 75, pp. 109–148. The Mineralogical Society of America, Chantilly (2013)Google Scholar
  23. 23.
    Ellis, A.J.: The effect of pressure on the first dissociation constant of “carbonic acid”. J. Chem. Soc. (resumed)(0), 3689–3699 (1959). doi:10.1039/JR9590003689
  24. 24.
    Shedlovsky, T., MacInnes, D.A.: The first ionization constant of carbonic acid, 0 to 38° from conductance measurements. J. Am. Chem. Soc. 57, 1705–1710 (1935)CrossRefGoogle Scholar
  25. 25.
    Millero, F., Huang, F., Graham, T., Pierrot, D.: The dissociation of carbonic acid in NaCl solutions as a function of concentration and temperature. Geochim. Cosmochim. Acta 71, 46–55 (2007). doi:10.1016/j.gca.2006.08.041 CrossRefGoogle Scholar
  26. 26.
    Stefansson, A., Benezeth, P., Schott, J.: Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200 °C: a potentiometric and spectrophotometric study. Geochim. Cosmochim. Acta 120, 600–611 (2013). doi:10.1016/j.gca.2013.04.023 CrossRefGoogle Scholar
  27. 27.
    MacInnes, D.A., Belcher, D.: The thermodynamic ionization constants of carbonic acid. J. Am. Chem. Soc. 55, 2630–2649 (1933)CrossRefGoogle Scholar
  28. 28.
    Park, S.N., Kim, C.S., Kim, M.H., Lee, I.J., Kim, K.: Spectrophotometric measurement of the first dissociation constants of carbonic acid at elevated temperatures. J. Chem. Soc. Faraday Trans. 94, 1421–1425 (1998)CrossRefGoogle Scholar
  29. 29.
    Galib, M., Hanna, G.: Mechanistic insights into the dissociation and decomposition of carbonic acid in water via the hydroxide route: an ab initio metadynamics study. J. Phys. Chem. B 115(50), 15024–15035 (2011). doi:10.1021/jp207752m CrossRefGoogle Scholar
  30. 30.
    Nguyen, M.T., Matus, M.H., Jackson, V.E., Ngan, V.T., Rustad, J.R., Dixon, D.A.: Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation. J. Phys. Chem. A 112, 10386–10398 (2008). doi:10.1021/jp804715j CrossRefGoogle Scholar
  31. 31.
    Wight, C.A., Boldyrev, A.I.: Potential energy surface and vibrational frequencies of carbonic acid. J. Phys. Chem. 99, 12125–12130 (1995). doi:10.1021/j100032a012 CrossRefGoogle Scholar
  32. 32.
    Tautermann, C.S., Voegele, A.F., Loerting, T., Kohl, I., Hallbrucker, A., Mayer, E., Liedl, K.R.: Towards the experimental decomposition rate of carbonic acid (H2CO3) in aqueous solution. Chem. Eur. J. 8, 66–73 (2002). doi:10.1002/1521-3765(20020104)8:1<66:aid-chem66>3.0.co;2-f CrossRefGoogle Scholar
  33. 33.
    Adamczyk, K., Premont-Schwarz, M., Pines, D., Pines, E., Nibbering, E.T.J.: Real-time observation of carbonic acid formation in aqueous solution. Science 326(5960), 1690–1694 (2009). doi:10.1126/science.1180060 CrossRefGoogle Scholar
  34. 34.
    Hage, W., Hallbrucker, A., Mayer, E.: Carbonic acid: synthesis by protonation of bicarbonate and FTIR spectroscopic characterization via a new cryogenic technique. J. Am. Chem. Soc. 115, 8427–8431 (1993). doi:10.1021/ja00071a061 CrossRefGoogle Scholar
  35. 35.
    Tafazzoli, M., Khanlarkhani, A.: Study of self-association of water in supercritical CO2 by Monte Carlo simulation: does water have a specific interaction with CO2? Fluid Phase Equilib. 267, 181–187 (2008). doi:10.1016/j.fluid.2008.02.022 CrossRefGoogle Scholar
  36. 36.
    Glezakou, V.A., Rousseau, R., Dang, L.X., McGrail, B.P.: Structure, dynamics and vibrational spectrum of supercritical CO2/H2O mixtures from ab initio molecular dynamics as a function of water cluster formation. Phys. Chem. Chem. Phys. 12, 8759–8771 (2010). doi:10.1039/b923306g CrossRefGoogle Scholar
  37. 37.
    Chialvo, A.A., Vlcek, L., Cole, D.R.: Acid gases in CO2-rich subsurface geologic environments. In: DePaolo, D.J., Cole, D.R., Navrotsky, A., Bourg, I.C. (eds.) Geochemistry of Geologic CO2 Sequestration. Reviews in Mineralogy & Geochemistry, vol. 77, pp. 361–398. The Mineralogical Society of America, Chantilly, VA (2013)Google Scholar
  38. 38.
    Jacquemet, N., Pironon, J., Saint-Marc, J.: Mineralogical changes of a well cement in various H2S–CO2(–brine) fluids at high pressure and temperature. Environ. Sci. Technol. 42, 282–288 (2008). doi:10.1021/es070853s CrossRefGoogle Scholar
  39. 39.
    Jacquemet, N., Pironon, J., Lagneau, V., Saint-Marc, J.: Armouring of well cement in H2S–CO2 saturated brine by calcite coating: experiments and numerical modelling. Appl. Geochem. 27, 782–795 (2012). doi:10.1016/j.apgeochem.2011.12.004 CrossRefGoogle Scholar
  40. 40.
    Farelas, F., Choi, Y.S., Nesic, S.: Corrosion behavior of API 5L X65 carbon steel under supercritical and liquid carbon dioxide phases in the presence of water and sulfur dioxide. Corrosion 69, 243–250 (2013). doi:10.5006/0739 CrossRefGoogle Scholar
  41. 41.
    Justice, J.C.: Conductance of electrolyte solutions. In: Conway, B.E., Bockris, J.O., Yeager, E. (eds.) Comprehensive Treatise of Electrochemistry, vol. 5, pp. 223–337. Plenum Press, New York (1983)Google Scholar
  42. 42.
    Ke, J., Su, W.T., Howdle, S.M., George, M.W., Cook, D., Perdjon-Abel, M., Bartlett, P.N., Zhang, W.J., Cheng, F., Levason, W., Reid, G., Hyde, J., Wilson, J., Smith, D.C., Mallik, K., Sazio, P.: Electrodeposition of metals from supercritical fluids. Proc. Natl. Acad. Sci. USA 106, 14768–14772 (2009). doi:10.1073/pnas.0901986106 CrossRefGoogle Scholar
  43. 43.
    Criscenti, L.J., Cygan, R.T.: Molecular simulations of carbon dioxide and water: cation solvation. Environ. Sci. Technol. 47, 87–94 (2013). doi:10.1021/es301608c CrossRefGoogle Scholar
  44. 44.
    Rempel, K.U., Liebscher, A., Heinrich, W., Schettler, G.: An experimental investigation of trace element dissolution in carbon dioxide: applications to the geological storage of CO2. Chem. Geol. 289, 224–234 (2011). doi:10.1016/j.chemgeo.2011.08.003 CrossRefGoogle Scholar
  45. 45.
    Bockris, J.O., Reddy, A.K.N., Gamboa-Aldeco, M.: Fundamentals of Electrodics, 2nd edn. Modern Electrochemistry, vol. 2A. Kluwer Academic/Plenum Publishers, New York (2000)Google Scholar
  46. 46.
    Pinho, S.P., Macedo, E.A.: Representation of salt solubility in mixed solvents: a comparison of thermodynamic models. Fluid Phase Equilib. 116, 209–216 (1996). doi:10.1016/0378-3812(95)02889-7 CrossRefGoogle Scholar
  47. 47.
    Secuianu, C., Feroiu, V., Geana, D.: Phase equilibria experiments and calculations for carbon dioxide plus methanol binary system. Central Eur. J. Chem. 7, 1–7 (2009). doi:10.2478/s11532-008-0085-5 CrossRefGoogle Scholar
  48. 48.
    Simonson, J.M., Oakes, C.S., Bodnar, R.J.: Densities of NaCl(aq) to the temperature 523 K at pressures to 40 MPa measured with a new vibrating-tube densitometer. J. Chem. Thermodyn. 26, 345–359 (1994). doi:10.1006/jcht.1994.1044 CrossRefGoogle Scholar
  49. 49.
    Mathias, S.A., Gluyas, J.G., Oldenburg, C.M., Tsang, C.F.: Analytical solution for Joule–Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs. Int. J. Greenh. Gas Control 4, 806–810 (2010). doi:10.1016/j.ijggc.2010.05.008 CrossRefGoogle Scholar
  50. 50.
    Oldenburg, C.M.: Joule–Thomson cooling due to CO2 injection into natural gas reservoirs. Energy Conv. Manag. 48, 1808–1815 (2007). doi:10.1016/j.enconman.2007.01.010 CrossRefGoogle Scholar
  51. 51.
    Spycher, N., Pruess, K., Ennis-King, J.: CO2–H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar. Geochim. Cosmochim. Acta 67, 3015–3031 (2003). doi:10.1016/s0016-7037(03)00273-4 CrossRefGoogle Scholar
  52. 52.
    Johnson, B.A.: Corrosion of metals in deionized water at 38 °C (100 °F). In: NASA Technical Memorandum. NASA, Washington (1969)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ryan M. Capobianco
    • 1
  • Miroslaw S. Gruszkiewicz
    • 2
  • Robert J. Bodnar
    • 1
  • J. Donald Rimstidt
    • 1
  1. 1.Department of GeosciencesVirginia TechBlacksburgUSA
  2. 2.Chemical Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations