Journal of Solution Chemistry

, Volume 43, Issue 6, pp 1019–1031 | Cite as

Does the Like Dissolves Like Rule Hold for Fullerene and Ionic Liquids?

  • Vitaly V. Chaban
  • Cleiton Maciel
  • Eudes Eterno Fileti


Over 150 solvents have been probed to dissolve light fullerenes, but with a quite moderate success. We uncover unusual mutual polarizability of C60 fullerene and selected room-temperature ionic liquids, which can be applied in numerous applications, e.g. to significantly promote solubility/miscibility of the highly hydrophobic C60 molecule. We report electron density and molecular dynamics analysis supported by the state-of-the-art hybrid density functional theory and empirical simulations with a specifically refined potential. The analysis suggests the workability of the proposed scheme and opens a new direction to obtain well-dispersed fullerene containing systems. A range of common molecular solvents and novel ionic solvents are compared to 1-butyl-3-methylimidazolium tetrafluoroborate.

Graphical Abstract


Fullerene Buckyball Ionic liquid Solvation Electronic structure Molecular dynamics 



The computations have been partially supported by the Danish Center for Scientific Computing (Horseshoe 5). C. M. and E. E. F. thank Brazilian agencies FAPESP and CNPq for support.


  1. 1.
    Kroto, H.W., Heath, J.R., Obrien, S.C., Curl, R.F., Smalley, R.E.: C-60—buckminsterfullerene. Nature 318, 162–163 (1985)CrossRefGoogle Scholar
  2. 2.
    Yannoni, C.S., Hoinkis, M., Devries, M.S., Bethune, D.S., Salem, J.R., Crowder, M.S., Johnson, R.D.: Scandium clusters in fullerene cages. Science 256, 1191–1192 (1992)CrossRefGoogle Scholar
  3. 3.
    Theobald, J.A., Oxtoby, N.S., Phillips, M.A., Champness, N.R., Beton, P.H.: Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 (2003)CrossRefGoogle Scholar
  4. 4.
    Mchedlov-Petrossyan, N.O.: Fullerenes in molecular liquids. Solutions in “good” solvents: another view. J. Mol. Liq. 161, 1–12 (2011)CrossRefGoogle Scholar
  5. 5.
    Bernardi, M., Lohrman, J., Kumar, P.V., Kirkeminde, A., Ferralis, N., Grossman, J.C., Ren, S.Q.: Nanocarbon-based photovoltaics. ACS Nano 6, 8896–8903 (2012)CrossRefGoogle Scholar
  6. 6.
    Schmidt-Hansberg, B., Sanyal, M., Klein, M.F.G., Pfaff, M., Schnabel, N., Jaiser, S., Vorobiev, A., Muller, E., Colsmann, A., Scharfer, P., Gerthsen, D., Lemmer, U., Barrena, E., Schabel, W.: Moving through the phase diagram: morphology formation in solution cast polymer–fullerene blend films for organic solar cells. ACS Nano 5, 8579–8590 (2011)CrossRefGoogle Scholar
  7. 7.
    Chamberlain, T.W., Popov, A.M., Knizhnik, A.A., Samoilov, G.E., Khlobystov, A.N.: The role of molecular clusters in the filling of carbon nanotubes. ACS Nano 4, 5203–5210 (2010)CrossRefGoogle Scholar
  8. 8.
    Corley, D.A., He, T., Tour, J.M.: Two-terminal molecular memories from solution-deposited C-60 films in vertical silicon nanogaps. ACS Nano 4, 1879–1888 (2010)CrossRefGoogle Scholar
  9. 9.
    Ruoff, R.S., Malhotra, R., Huestis, D.L., Tse, D.S., Lorents, D.C.: Anomalous solubility behavior of C60. Nature 362, 140–141 (1993)CrossRefGoogle Scholar
  10. 10.
    Chaban, V.V., Prezhdo, V.V., Prezhdo, O.V.: Covalent linking greatly enhances photoinduced electron transfer in fullerene–quantum dot nanocomposites: time-domain ab initio study. J. Phys. Chem. Lett. 4, 1–6 (2013)CrossRefGoogle Scholar
  11. 11.
    Semenov, K.N., Charykov, N.A.: Temperature dependence of solubility of individual light fullerenes and industrial fullerene mixture in 1-chloronaphthalene and 1-bromonaphthalene. J. Chem. Eng. Data 55, 2373–2378 (2010)CrossRefGoogle Scholar
  12. 12.
    Semenov, K.N., Charykov, N.A., Keskinov, V.A., Piartman, A.K., Blokhin, A.A., Kopyrin, A.A.: Solubility of light fullerenes in organic solvents. J. Chem. Eng. Data 55, 13–36 (2010)CrossRefGoogle Scholar
  13. 13.
    Scrivens, W.A., Tour, J.M.: Potent solvents for C-60 and their utility for the rapid acquisition of C-13 nmr data for fullerenes. J. Chem. Soc. Chem. Commun. 15, 1207–1209 (1993)CrossRefGoogle Scholar
  14. 14.
    Talukdar, S., Pradhan, P., Banerji, A.: Electron donor-acceptor interactions of C-60 with n- and pi-donors: a rational approach towards its solubility. Fuller. Sci. Technol. 5, 547–557 (1997)CrossRefGoogle Scholar
  15. 15.
    Lozano, K., Chibante, L.P.F., Sheng, X.Y., Gaspar-Rosas, A., Barrera, E.V.: Physical examination and handling of wet and dry C60. In: Battle, T.P., Henein, H. (eds.) Processing and Handling of Powders and Dusts. Minerals, Metals, and Materials Society, Mexico (1997)Google Scholar
  16. 16.
    Pourbasheer, E., Riahi, S., Ganjali, M.R., Norouzi, P.: Prediction of solubility of fullerene C-60 in various organic solvents by genetic algorithm-multiple linear regression. Fuller. Nanotub. Carb. Nanostruct. 19, 585–598 (2011)CrossRefGoogle Scholar
  17. 17.
    Furuishi, T., Ohmachi, Y., Fukami, T., Nagase, H., Suzuki, T., Endo, T., Ueda, H., Tomono, K.: Enhanced solubility of fullerene (C(60)) in water by inclusion complexation with cyclomaltononaose (delta-CD) using a cogrinding method. J. Incl. Phenom. Macrocycl. Chem. 67, 233–239 (2010)CrossRefGoogle Scholar
  18. 18.
    Troshin, P.A., Susarova, D.K., Khakina, E.A., Goryachev, A.A., Borshchev, O.V., Ponomarenko, S.A., Razumov, V.F., Sariciftci, N.S.: Material solubility and molecular compatibility effects in the design of fullerene/polymer composites for organic bulk heterojunction solar cells. J. Mater. Chem. 22, 18433–18441 (2012)CrossRefGoogle Scholar
  19. 19.
    Monticelli, L.: On atomistic and coarse-grained models for C-60 fullerene. J. Chem. Theory Comput. 8, 1370–1378 (2012)CrossRefGoogle Scholar
  20. 20.
    Qian, H.J., van Duin, A.C.T., Morokuma, K., Irle, S.: Reactive molecular dynamics simulation of fullerene combustion synthesis: Reaxff versus DFTB potentials. J. Chem. Theory Comput. 7, 2040–2048 (2011)CrossRefGoogle Scholar
  21. 21.
    Qiao, R., Roberts, A.P., Mount, A.S., Klaine, S.J., Ke, P.C.: Translocation of C-60 and its derivatives across a lipid bilayer. Nano Lett. 7, 614–619 (2007)CrossRefGoogle Scholar
  22. 22.
    Chiu, C.C., DeVane, R., Klein, M.L., Shinoda, W., Moore, P.B., Nielsen, S.O.: Coarse-grained potential models for phenyl-based molecules: II. Application to fullerenes. J. Phys. Chem. B 114, 6394–6400 (2010)CrossRefGoogle Scholar
  23. 23.
    Monticelli, L., Salonen, E., Ke, P.C., Vattulainen, I.: Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective. Soft Matter 5, 4433–4445 (2009)CrossRefGoogle Scholar
  24. 24.
    Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P., Marrink, S.J.: The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4, 819–834 (2008)CrossRefGoogle Scholar
  25. 25.
    Maciel, C., Fileti, E.E., Rivelino, R.: Assessing the solvation mechanism of C-60(OH)(24) in aqueous solution. Chem. Phys. Lett. 507, 244–247 (2011)CrossRefGoogle Scholar
  26. 26.
    Colherinhas, G., Fonseca, T.L., Fileti, E.E.: Theoretical analysis of the hydration of C-60 in normal and supercritical conditions. Carbon 49, 187–192 (2011)CrossRefGoogle Scholar
  27. 27.
    Malaspina, T., Fileti, E.E., Rivelino, R.: Structure and UV-Vis spectrum of C-60 fullerene in ethanol: a sequential molecular dynamics/quantum mechanics study. J. Phys. Chem. B 111, 11935–11939 (2007)CrossRefGoogle Scholar
  28. 28.
    Wong-Ekkabut, J., Baoukina, S., Triampo, W., Tang, I.M., Tieleman, D.P., Monticelli, L.: Computer simulation study of fullerene translocation through lipid membranes. Nat. Nanotechnol. 3, 363–368 (2008)CrossRefGoogle Scholar
  29. 29.
    Lopez, V., Roman-Perez, G., Arregui, A., Mateo-Marti, E., Banares, L., Martin-Gago, J.A., Soler, J.M., Gomez-Herrero, J., Zamora, F.: Azafullerene-like nanosized clusters. ACS Nano 3, 3352–3357 (2009)CrossRefGoogle Scholar
  30. 30.
    Ge, L., Jefferson, J.H., Montanari, B., Harrison, N.M., Pettifor, D.G., Briggs, G.A.D.: Effects of doping on electronic structure and correlations in carbon peapods. ACS Nano 3, 1069–1076 (2009)CrossRefGoogle Scholar
  31. 31.
    Shukla, M.K., Dubey, M., Leszczynski, J.: Theoretical investigation of electronic structures and propertiesof C-60-gold nanocontacts. ACS Nano 2, 227–234 (2008)CrossRefGoogle Scholar
  32. 32.
    Zheng, G.S., Irle, S., Elstner, M., Morokuma, K.: Quantum chemical molecular dynamics model study of fullerene formation from open-ended carbon nanotubes. J. Phys. Chem. A 108, 3182–3194 (2004)CrossRefGoogle Scholar
  33. 33.
    Lopes, J.N.C., Padua, A.A.H.: CL&P: a generic and systematic force field for ionic liquids modeling. Theor. Chem. Acc. 131, 1129 (2012)CrossRefGoogle Scholar
  34. 34.
    Tariq, M., Freire, M.G., Saramago, B., Coutinho, J.A.P., Lopes, J.N.C., Rebelo, L.P.N.: Surface tension of ionic liquids and ionic liquid solutions. Chem. Soc. Rev. 41, 829–868 (2012)CrossRefGoogle Scholar
  35. 35.
    Chaban, V.V., Voroshylova, I.V., Kalugin, O.N.: A new force field model for the simulation of transport properties of imidazolium-based ionic liquids. Phys. Chem. Chem. Phys. 13, 7910–7920 (2011)CrossRefGoogle Scholar
  36. 36.
    Chaban, V.: Polarizability versus mobility: atomistic force field for ionic liquids. Phys. Chem. Chem. Phys. 13, 16055–16062 (2011)CrossRefGoogle Scholar
  37. 37.
    Chaban, V.V., Prezhdo, O.V.: A new force field model of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and acetonitrile mixtures. Phys. Chem. Chem. Phys. 13, 19345–19354 (2011)CrossRefGoogle Scholar
  38. 38.
    Perpete, E.A., Champagne, B., Kirtman, B.: Large vibrational nonlinear optical properties of C-60: a combined Hartree–Fock/density-functional approach. Phys. Rev. B 61, 13137–13143 (2000)CrossRefGoogle Scholar
  39. 39.
    Chai, J.D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)CrossRefGoogle Scholar
  40. 40.
    Davidson, E.R.: Comment on Dunning’s correlation-consistent basis sets—comment. Chem. Phys. Lett. 260, 514–518 (1996)CrossRefGoogle Scholar
  41. 41.
    Rivelino, R., Maniero, A.M., Prudente, F.V., Costa, L.S.: Theoretical calculations of the structure and UV–Vis absorption spectra of hydrated C-60 fullerene. Carbon 44, 2925–2930 (2006)CrossRefGoogle Scholar
  42. 42.
    Maciel, C., Fileti, E.E.: Molecular interactions between fullerene C-60 and ionic liquids. Chem. Phys. Lett. 568, 75–79 (2013)CrossRefGoogle Scholar
  43. 43.
    Sawada, H., Kasai, R.: Solubilization of fullerene into ionic liquids by the use of fluoroalkyl end-capped oligomers. Polym. Adv. Technol. 16, 655–658 (2005)CrossRefGoogle Scholar
  44. 44.
    Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007)CrossRefGoogle Scholar
  45. 45.
    Parrinello, M., Rahman, A.: Polymorphic transitions in single-crystals—a new molecular-dynamics method. J. Appl. Phys. 52, 7182–7190 (1981)CrossRefGoogle Scholar
  46. 46.
    Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M.: LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997)CrossRefGoogle Scholar
  47. 47.
    Darden, T., York, D., Pedersen, L.: Particle mesh Ewald—an N. Log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)CrossRefGoogle Scholar
  48. 48.
    van der Spoel, D., Hess, B.: GROMACS-the road ahead. Wiley Interdiscip. Rev. 1, 710–715 (2011)Google Scholar
  49. 49.
    Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)CrossRefGoogle Scholar
  50. 50.
    Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005)CrossRefGoogle Scholar
  51. 51.
    Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306–317 (2001)Google Scholar
  52. 52.
    Martins, S., Fedorov, A., Afonso, C.A.M., Baleizao, C., Berberan-Santos, M.N.: Fluorescence of fullerene C-70 in ionic liquids. Chem. Phys. Lett. 497, 43–47 (2010)CrossRefGoogle Scholar
  53. 53.
    Wang, J.Y., Chu, H.B., Li, Y.: Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. ACS Nano 2, 2540–2546 (2008)CrossRefGoogle Scholar
  54. 54.
    Hantal, G., Voroshylova, I., Cordeiro, M.N.D.S., Jorge, M.: A systematic molecular simulation study of ionic liquid surfaces using intrinsic analysis methods. Phys. Chem. Chem. Phys. 14, 5200–5213 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vitaly V. Chaban
    • 1
  • Cleiton Maciel
    • 2
  • Eudes Eterno Fileti
    • 3
  1. 1.MEMPHYS - Center for Biomembrane PhysicsUniversity of Southern DenmarkOdense MDenmark
  2. 2.Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSanto AndréBrazil
  3. 3.Instituto de Ciência e TecnologiaUniversidade Federal de São PauloSão José dos CamposBrazil

Personalised recommendations