Journal of Solution Chemistry

, Volume 42, Issue 4, pp 772–799

Correlation of the Solubilizing Abilities of 1-Butyl-1-methyl-pyrrolidinium Tris(pentafluoroethyl)trifluorophosphate, 1-Butyl-1-methylpyrrolidinium Triflate and 1-Methoxyethyl-1-methylmorpholinium Tris(pentafluoroethyl)trifluorophosphate

  • Pamela Twu
  • Jared L. Anderson
  • Timothy W. Stephens
  • Anastasia Wilson
  • William E. AcreeJr.
  • Michael H. Abraham
Article

Abstract

Chromatographic retention data were measured for a wide range of organic solutes on 1-butyl-1-methylpyrolidinium tris(pentafluoroethyl)trifluorophosphate ([BMPyrr]+[FAP]), 1-butyl-1-methylpyrrolidinium triflate, ([BMPyrr]+[Trif]), and 1-methoxyethyl-1-methylmorpholinium tris(pentafluoroethyl)trifluorophosphate, ([MeoeMMorp]+[FAP]), stationary phases at (323, 353 and 383) K. The measured retention factors were combined with published infinite dilution activity coefficient and gas-to-water partition coefficient data to yield gas-to-anhydrous ionic liquid (IL) and water-to-anhydrous IL partition coefficients. The three sets of partition coefficients were analyzed using the Abraham model. The derived Abraham model correlations describe the observed gas-to-IL (log10K) and water-to-IL (log10P) partition coefficient data to within average standard deviations of about 0.11 and 0.15 log10 units, respectively.

Keywords

Chromatographic retention factors Partition coefficients Ionic liquids Activity coefficients Linear free energy relationships 

References

  1. 1.
    Ravilla, U.K., Banerjee, T.: Liquid liquid equilibria of imidazolium based ionic liquid + pyridine + hydrocarbon at 298.15 K: experiments and correlations. Fluid Phase Equilibr. 324, 17–27 (2012)CrossRefGoogle Scholar
  2. 2.
    Chen, X., Liu, G., Yuan, S., Asumana, C., Wang, W., Yu, G.: Extractive desulfurization of fuel oils with thiazolium-based ionic liquids. Sep. Sci. Technol. 47, 819–826 (2012)CrossRefGoogle Scholar
  3. 3.
    Yu, G., Zhao, J., Song, D., Asumana, C., Zhang, X., Chaen, X.: Deep oxidative desulfurization of diesel fuels by acidic ionic liquids. Ind. Eng. Chem. Res. 50, 11690–11697 (2011)CrossRefGoogle Scholar
  4. 4.
    Shaterian, H.R., Honarmad, M.: Task-specific ionic liquid as the recyclable catalyst for the rapid and green synthesis of dihydropyrano[3,2-c]chromene derivatives. Synth. Commun. 41, 3573–3581 (2011)CrossRefGoogle Scholar
  5. 5.
    Kumar, V., Sharma, U., Verma, P.K., Kumar, N., Singh, B.: Silica-supported boric acid with ionic liquid: A novel recyclable catalytic system for one-pot three-component annich reaction. Chem. Pharm. Bull. 59, 639–645 (2011)CrossRefGoogle Scholar
  6. 6.
    Sandhu, S., Sandhu, J.S.: Recent advances in ionic liquids. Green unconventional solvents of this century. Part I. Green Chem. Lett. Rev. 4, 289–310 (2011)CrossRefGoogle Scholar
  7. 7.
    Sandhu, S., Sandhu, J.S.: Recent advances in ionic liquids. Green unconventional solvents of this century. Part II. Green Chem. Lett. Rev. 4, 311–320 (2011)CrossRefGoogle Scholar
  8. 8.
    Mukhopadhyay, C., Datta, A., Tapaswi, P.K.: Halogen-free room-temperature Brønsted acidic ionic liquid [Hmim] + HSO4 as a recyclable green “dual reagent” catalysis for the synthesis of triarylmethanes (TRAMS). Synth. Commun. 42, 2453–2463 (2012)CrossRefGoogle Scholar
  9. 9.
    Dabiri, M., Salehi, P., Bahramnejad, M., Baghbanzadeh, M.: Eco-friendly and efficient procedure for hetero-Michael addition reactions with an acidic ionic liquid as catalyst and reaction medium. Monatsh. Chem. 143, 109–112 (2012)CrossRefGoogle Scholar
  10. 10.
    Abraham, M.H.: Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22, 73–83 (1993)CrossRefGoogle Scholar
  11. 11.
    Abraham, M.H., Ibrahim, A., Zissimos, A.M.: Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 1037, 29–47 (2004)CrossRefGoogle Scholar
  12. 12.
    Stephens, T.W., Loera, M., Quay, A.N., Chou, V., Shen, C., Wilson, A., Acree Jr., W.E., Abraham, M.H.: Correlation of solute transfer into toluene and ethylbenzene from water and from the gas phase based on the Abraham model. Open Thermodyn. J. 5, 104–121 (2011)CrossRefGoogle Scholar
  13. 13.
    Saifullah, M., Ye, S., Grubbs, L.M., De La Rosa, N.E., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for transfer of neutral molecules to tetrahydrofuran and to 1,4-dioxane, and for transfer of ions to tetrahydrofuran. J. Solution Chem. 40, 2082–2094 (2011)CrossRefGoogle Scholar
  14. 14.
    Abraham, M.H., Acree Jr., W.E.: The transfer of neutral molecules, ions and ionic species from water to benzonitrile; comparison with nitrobenzene. Thermochim. Acta 526, 22–28 (2011)CrossRefGoogle Scholar
  15. 15.
    Stephens, T.W., De La Rosa, N.E., Saifullah, M., Ye, S., Chou, V., Quay, A.N., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for transfer of neutral molecules and ions to sulfolane. Fluid Phase Equilibr. 309, 30–35 (2011)CrossRefGoogle Scholar
  16. 16.
    Stephens, T.W., De La Rosa, N.E., Saifullah, M., Ye, S., Chou, V., Quay, A.N., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for solute partitioning into o-xylene, m-xylene and p-xylene from both water and the gas. Fluid Phase Equilibr. 308, 64–71 (2011)CrossRefGoogle Scholar
  17. 17.
    Abraham, M.H., Smith, R.E., Luchtefeld, R., Boorem, A.J., Luo, R., Acree Jr., W.E.: Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 99, 1500–1515 (2010)CrossRefGoogle Scholar
  18. 18.
    Acree Jr., W.E., Abraham, M.H.: The analysis of solvation in ionic liquids and organic solvents using the Abraham linear free energy relationship. J. Chem. Technol. Biotechnol. 81, 14411446 (2006); Erratum. J. Chem. Technol. Biotechnol. 81, 1722 (2006)CrossRefGoogle Scholar
  19. 19.
    Abraham, M.H., Acree Jr., W.E.: Comparative analysis of solvation and selectivity in room temperature ionic liquids using the Abraham linear free energy relationship. Green Chem. 8, 906–915 (2006)CrossRefGoogle Scholar
  20. 20.
    Mintz, C., Acree Jr., W.E.: Partition coefficient correlations for transfer of solutes from gas phase and water to room temperature ionic liquids. Phys. Chem. Liq. 45, 241–249 (2007)CrossRefGoogle Scholar
  21. 21.
    Sprunger, L.M., Acree Jr., W.E., Abraham, M.H.: Linear free energy relationship correlations for the solubilising characterisation of room temperature ionic liquids containing 1-hexyloxymethyl-3-methylimidazolium and 1,3-dihexyloxymethylimidazolium cations. Phys. Chem. Liq. 48, 394–402 (2010)CrossRefGoogle Scholar
  22. 22.
    Moise, J.-C., Mutelet, F., Jaubert, J.-N., Grubbs, L.M., Acree Jr., W.E., Baker, G.A.: Activity coefficients at infinite dilution of organic compounds in four new imidazolium-based ionic liquids. J. Chem. Eng. Data 56, 3106–3114 (2011)CrossRefGoogle Scholar
  23. 23.
    Grubbs, L.M., Ye, S., Saifullah, M., Acree Jr., W.E., Twu, P., Anderson, J.L., Baker, G.A., Abraham, M.H.: Correlation of the solubilizing abilities of hexyl(trimethyl)ammonium bis(trifluoromethylsulfonyl)imide, 1-propyl-1-methyl-piperidinium bis((trifluoromethyl)sulfonyl)imide and 1-butyl-1-methyl-pyrrolidinium thiocyanate. J. Solution Chem. 40, 2000–2022 (2011)CrossRefGoogle Scholar
  24. 24.
    Mutelet, F., Revelli, A.-L., Jaubert, J.-N., Sprunger, L.M., Acree Jr., W.E., Baker, G.A.: Partition coefficients of organic compounds in new imidazolium and tetralkylammonium based ionic liquids using inverse gas chromatography. J. Chem. Eng. Data 55, 234–242 (2010)CrossRefGoogle Scholar
  25. 25.
    Sprunger, L.M., Gibbs, J., Baltazar, Q.Q., Acree Jr., W.E., Abraham, M.H., Anderson, J.L.: Characterisation of room temperature ionic liquid chromatographic stationary phases by combining experimental retention factor and partition coefficient data into a single model. Phys. Chem. Liq. 47, 74–83 (2009)CrossRefGoogle Scholar
  26. 26.
    Revelli, A.-L., Mutelet, F., Jaubert, J.-N., Garcia-Martinez, M., Sprunger, L.M., Acree Jr., W.E., Baker, G.A.: Study of ether-, alcohol-, or cyano-functionalized ionic liquids using inverse gas chromatography. J. Chem. Eng. Data 55, 2434–2443 (2010)CrossRefGoogle Scholar
  27. 27.
    Grubbs, L.M., Saifullah, M., De La Rosa, N.E., Acree Jr., W.E., Abraham, M.H., Zhao, Q., Anderson, J.L.: Cation-specific and anion-specific Abraham model correlations for solute transfer into ionic liquids. Glob. J. Phys. Chem. 1, 1–19 (2010)Google Scholar
  28. 28.
    Grubbs, L.M., Ye, S., Saifullah, M., McMillan-Wiggins, M.C., Acree Jr., W.E., Abraham, M.H., Twu, P., Anderson, J.L.: Correlations for describing gas-to-ionic liquid partitioning at 323 K based on ion-specific equation coefficient and group contribution versions of the Abraham model. Fluid Phase Equilibr. 301, 257–266 (2011)CrossRefGoogle Scholar
  29. 29.
    Revelli, A.-L., Sprunger, L.M., Gibbs, J., Acree Jr., W.E., Baker, G.A., Mutelet, F.: Activity coefficients at infinite dilution of organic compounds in trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide using inverse gas chromatography. J. Chem. Eng. Data 54, 977–985 (2009)CrossRefGoogle Scholar
  30. 30.
    Sprunger, L.M., Acree Jr., W.E., Abraham, M.H.: Linear free energy relationship (LFER) correlations for the solubilising characterisation of room temperature ionic liquids containing triethylsulphonium and 1-butyl-1-methylpyrrolidinium cations. Phys. Chem. Liq. 48, 385–393 (2010)CrossRefGoogle Scholar
  31. 31.
    Proctor, A., Sprunger, L.M., Acree Jr., W.E., Abraham, M.H.: LFER correlations for the solubilising characterisation of room temperature ionic liquids containing trifluoromethanesulfonate and trifluoroacetate anions. Phys. Chem. Liq. 46, 631–642 (2008)CrossRefGoogle Scholar
  32. 32.
    Stephens, T.W., Acree, W.E., Jr., Twu, P., Anderson, J.L., Baker, G.A., Abraham, M.H.: Correlation of the solubilizing abilities of 1-butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide and 1-butyl-1-methylpyrrolidinium tetracyanoborate. J. Solution Chem. 41, 1165–1184 (2012)Google Scholar
  33. 33.
    Acree, W.E. Jr., Grubbs, L.M., Abraham, M.H.: Selection of ionic liquid solvents for chemical separations based on the abraham model. In: Kokorin, A. (ed.) Ionic Liquids, Applications and Perspectives (Book 2), Chap. 13, pp. 273–302. . INTECH Publishers (2011)Google Scholar
  34. 34.
    Sprunger, L., Clark, M., Acree Jr., W.E., Abraham, M.H.: Characterization of room- temperature ionic liquids by the Abraham model with cation-specific and anion-specific equation coefficients. J. Chem. Inf. Model. 47, 1123–1129 (2007)CrossRefGoogle Scholar
  35. 35.
    Sprunger, L.M., Proctor, A., Acree Jr., W.E., Abraham, M.H.: LFER correlations for room temperature ionic liquids: Separation of equation coefficients into individual cation-specific and anion-specific contributions. Fluid Phase Equilibr. 265, 104–111 (2008)CrossRefGoogle Scholar
  36. 36.
    Sprunger, L.M., Gibbs, J., Proctor, A., Acree Jr., W.E., Abraham, M.H., Meng, Y., Yao, C., Anderson, J.L.: Linear free energy relationship correlations for room temperature ionic liquids: revised cation-specific and anion-specific equation coefficients for predictive applications covering a much larger area of chemical space. Ind. Eng. Chem. Res. 48, 4145–4154 (2009)CrossRefGoogle Scholar
  37. 37.
    Dománska, U., Lukoshko, E.V., Królikowski, M.: Measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate ([BMPYR][FAP]). Chem. Eng. J. 183, 261–270 (2012)CrossRefGoogle Scholar
  38. 38.
    Dománska, U., Redhi, G.G., Marciniak, A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate using GLC. Fluid Phase Equilibr. 278, 97–102 (2009)CrossRefGoogle Scholar
  39. 39.
    Wlazlo, M., Marciniak, A.: Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 4-(2-methoxyethyl)-4-methylmorpholinium trifluorotris(perfluoroethyl)phosphate. J. Chem. Thermodyn. 54, 366–377 (2012)Google Scholar
  40. 40.
    Baltazar, Q.Q., Leininger, S.K., Anderson, J.L.: Binary ionic liquid mixtures as gas chromatography stationary phases for improving the separation selectivity of alcohols and aromatic compounds. J. Chromatogr. A 1182, 119–127 (2008)CrossRefGoogle Scholar
  41. 41.
    Abraham, M.H., Andonian-Haftvan, J., Whiting, G.S., Leo, A., Taft, R.W.: Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapors in water at 298 K, and a new method for its determination. J. Chem. Soc., Perkin Trans. 2, 1777–1791 (1994)Google Scholar
  42. 42.
    Abraham, M.H., Ibrahim, A., Acree Jr., W.E.: Partition of compounds from gas to water and from gas to physiological saline at 310 K: Linear free energy relationships. Fluid Phase Equilibr. 251, 93–109 (2007)CrossRefGoogle Scholar
  43. 43.
    Zissimos, A.M., Abraham, M.H., Barker, M.C., Box, K.J., Tam, K.Y.: Calculation of Abraham descriptors from solvent–water partition coefficients in four different systems; evaluation of different methods of calculation. J. Chem. Soc., Perkin Trans. 2, 470–477 (2002)Google Scholar
  44. 44.
    Zissimos, A.M., Abraham, M.H., Du, C.M., Valko, K., Bevan, C., Reynolds, D., Wood, J., Tam, K.Y.: Calculation of Abraham descriptors from experimental data from seven HPLC systems; evaluation of five different methods of calculation. J. Chem. Soc., Perkin Trans. 2, 2001–2010 (2002)Google Scholar
  45. 45.
    Dohanyosova, P., Sarraute, S., Dohnal, V., Majer, V., Gomes, M.C.: Aqueous solubility and related thermodynamic functions of nonaromatic hydrocarbons as a function of molecular structure. Ind. Eng. Chem. Res. 43, 2805–2815 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pamela Twu
    • 1
  • Jared L. Anderson
    • 1
  • Timothy W. Stephens
    • 2
  • Anastasia Wilson
    • 2
  • William E. AcreeJr.
    • 2
  • Michael H. Abraham
    • 3
  1. 1.Department of ChemistryThe University of ToledoToledoUSA
  2. 2.Department of ChemistryUniversity of North TexasDentonUSA
  3. 3.Department of ChemistryUniversity College LondonLondonUK

Personalised recommendations