Journal of Solution Chemistry

, Volume 42, Issue 1, pp 60–79

Chlorine Dioxide–Iodide–Methyl Acetoacetate Oscillation Reaction Investigated by UV–Vis and an Online FTIR Spectrophotometric Method

  • Laishun Shi
  • Na Li
  • Jie Liu
  • Chunying Yan
  • Xiaomei Wang
  • Chunlei Huai
Article

Abstract

In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide–iodide ion–methyl acetoacetate reaction system, a series of experiments were done by using UV–vis and an online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, sulfuric acid, and the pH have great influences on the oscillations observed at the wavelength 350 nm. There is a pre-oscillatory or induction period, and the amplitude and number of oscillations are dependent on the initial concentration of the reactants. Equations were obtained for the variation of the triiodide ion reaction rate with the reaction time and the initial concentrations in the oscillation stage. The oscillation reaction was accelerated by increasing the temperature. The apparent activation energies for the induction period and the oscillation period are 55.65 and 33.00 kJ·mol−1, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism is proposed for the oscillation reaction.

Keywords

Chlorine dioxide Oscillation reaction UV–vis spectrophotometry Online FTIR Apparent activation energy Methyl acetoacetate 

Supplementary material

10953_2013_9955_MOESM1_ESM.doc (168 kb)
Supplementary material 1 (DOC 168 kb)

References

  1. 1.
    Field, R.J., Noyes, R.M., Koros, E.: Oscillation in chemical system II. Through analysis of temporal oscillation in the bromate–cerium–malonic acid system. J. Am. Chem. Soc. 94, 8649–8664 (1972)CrossRefGoogle Scholar
  2. 2.
    Field, R.J., Noyes, R.M.: Oscillations in chemical systems IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)CrossRefGoogle Scholar
  3. 3.
    De Kepper, P., Boissonade, J., Epstein, I.R.: Chlorite–iodide reaction: a versatile system for the study of nonlinear dynamical behavior. J. Phys. Chem. 94, 6525–6536 (1990)CrossRefGoogle Scholar
  4. 4.
    Bray, W.C.: Beitrage zur Kenntnis der Halogensauerstuff verbindungen. Abhandlung III. Zur Kenntnis des Chlordioxyds. Z. Phys. Chem. 54, 575–581 (1906)Google Scholar
  5. 5.
    Fukutomi, H., Gordon, G.: Kinetic study of the reaction between chlorine dioxide and potassium iodide in aqueous solution. J. Am. Chem. Soc. 89, 1362–1366 (1967)CrossRefGoogle Scholar
  6. 6.
    Indelli, A.: Kinetic study on the reaction of sodium chlorite with potassium iodide. J. Phys. Chem. 68, 3027–3031 (1964)CrossRefGoogle Scholar
  7. 7.
    Dolnik, M., Epstein, I.R.: Excitability and bursting in the chlorine dioxide–iodide reaction in a forced open system. J. Chem. Phys. 97, 3265–3273 (1992)CrossRefGoogle Scholar
  8. 8.
    Dolnik, M., Epstein, I.R.: A coupled chemical burster: the chlorine dioxide–iodide reaction in two flow reactors. J. Chem. Phys. 98, 1149–1155 (1993)CrossRefGoogle Scholar
  9. 9.
    De Kepper, P., Epstein, I.R., Kustin, K., Orbán, M.: Batch oscillations and spatial wave patterns in chlorite oscillating systems. J. Phys. Chem. 86, 170–171 (1982)CrossRefGoogle Scholar
  10. 10.
    De Kepper, P., Epstein, I.R.: A mechanistic study of oscillations and bistability in the Briggs–Rauscher reaction. J. Am. Chem. Soc. 104, 49–55 (1982)CrossRefGoogle Scholar
  11. 11.
    Lengyel, I., Rábai, G., Epstein, I.R.: Batch oscillation in the reaction of chlorine dioxide with iodine and malonic acid. J. Am. Chem. Soc. 112, 4606–4607 (1990)CrossRefGoogle Scholar
  12. 12.
    Lengyel, I., Rábai, G., Epstein, I.R.: Experimental and modeling study of oscillations in the chlorine dioxide–iodine–malonic acid reaction. J. Am. Chem. Soc. 112, 9104–9110 (1990)CrossRefGoogle Scholar
  13. 13.
    Lengyel, I., Li, J., Kustin, K., Epstein, I.R.: Rate constants for reactions between iodine- and chlorine-containing species: a detailed mechanism of the chlorine dioxide/chlorite–iodide reaction. J. Am. Chem. Soc. 118, 3708–3719 (1996)CrossRefGoogle Scholar
  14. 14.
    Lengyel, I., Epstein, I.R.: Modeling of Turing structures in the chlorite–iodide–malonic acid–starch reaction system. Science 251(4994), 650–652 (1991)CrossRefGoogle Scholar
  15. 15.
    Lengyel, I., Kadar, S., Epstein, I.R.: Transient Turing structures in a gradient-free closed system. Science 259(5094), 493–495 (1993)CrossRefGoogle Scholar
  16. 16.
    Munuzuri, A.P., Dolnik, M., Zhabotinsky, A.M., Epstein, I.R.: Control of the chlorine dioxide–iodine–malonic acid oscillating reaction by illumination. J. Am. Chem. Soc. 121, 8065–8069 (1999)CrossRefGoogle Scholar
  17. 17.
    Fabian, I., Gordon, G.: The kinetics and mechanism of the chlorine dioxide–iodide ion reaction. Inorg. Chem. 36, 2494–2497 (1997)CrossRefGoogle Scholar
  18. 18.
    Strier, D.E., De Kepper, P., Boissonade, J.: Turing patterns, spatial bistability, and front interactions in the [ClO2, I2, I, CH2(COOH)2] reaction. J. Phys. Chem. A 109, 1357–1363 (2005)CrossRefGoogle Scholar
  19. 19.
    Szalai, I., De Kepper, P.: Turing patterns, spatial bistability, and front instabilities in a reaction–diffusion system. J. Phys. Chem. A 108, 5315–5321 (2004)CrossRefGoogle Scholar
  20. 20.
    Riaz, S.S., Ray, D.S.: Spiral pattern in chlorite–iodide–malonic acid reaction: a theoretical and numerical study. J. Phys. Chem. 123, 174506.1–174506.5 (2005)Google Scholar
  21. 21.
    Long, D.A., Chodroff, L., O’Neal, T.M., Hemkin, S.: A true chemical clock: serially coupled chlorite–iodide oscillators. Chem. Phys. Lett. 447, 340–344 (2005)CrossRefGoogle Scholar
  22. 22.
    Shi, L., Li, W., Wang, F.: Experimental study of a closed system in the chlorine dioxide–iodine–malonic acid–sulfuric acid oscillation reaction by UV–vis spectrophotometric method. J. Solut. Chem. 38, 571–588 (2009)CrossRefGoogle Scholar
  23. 23.
    Yan, C., Shi, L., Guo, F.: Experimental study of a closed system in the sodium chlorite–iodine–ethyl acetoacetate oscillation reaction by UV–Vis and online FTIR spectrophotometric method. Res. Chem. Intermed. 37, 929–947 (2011)CrossRefGoogle Scholar
  24. 24.
    Guo, F., Shi, L., Wang, L.: Experimental study of closed system in the chlorine dioxide–iodine–ethyl acetoacetate–sulfuric acid oscillation reaction by UV–vis spectrophotometric methods. J. Solut. Chem. 40, 587–607 (2011)CrossRefGoogle Scholar
  25. 25.
    Li, N., Shi, L., Wang, X., Guo, F., Yan, C.: Experimental study of closed system in the chlorine dioxide–iodide–sulfuric acid reaction by UV–vis spectrophotometric method. Int. J. Anal. Chem. 2011, Article ID 130102 (2011)Google Scholar
  26. 26.
    Wyman, D.P., Kaufman, P.R., Freeman, W.R.: The chlorination of active hydrogen compounds with sulfuryl chloride. II. Esters, nitriles, nitro compounds, and aldehydes. J. Org. Chem. 29, 2706–2710 (1964)CrossRefGoogle Scholar
  27. 27.
    Cieciuch, R.F.W., Westheimer, F.W.: Halide catalysis in the bromination of deoxybenzoin. J. Am. Chem. Soc. 85, 2591–2595 (1963)CrossRefGoogle Scholar
  28. 28.
    Epstein, I.R., Kustin, K.: A mechanism for dynamical behavior in the oscillatory chlorite–iodide reaction. J. Phys. Chem. 89, 2275–2282 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Laishun Shi
    • 1
  • Na Li
    • 1
  • Jie Liu
    • 1
  • Chunying Yan
    • 1
  • Xiaomei Wang
    • 1
  • Chunlei Huai
    • 1
  1. 1.School of Chemistry and Chemical EngineeringSouth Campus, Shandong UniversityJinanPeople’s Republic of China

Personalised recommendations